Life-span of solutions for a nonlinear parabolic system

被引:0
|
作者
Tayachi, Slim [1 ]
机构
[1] Univ Tunis Manar, Fac Sci Tunis, Dept Math, Lab Equat Derivees Partielles LR03ES04, Tunis 2092, Tunisia
关键词
Nonlinear parabolic systems; Reaction-diffusion systems; Local existence; Blow-up; Life-span; WEAKLY COUPLED SYSTEM; POINT BLOW-UP; GLOBAL EXISTENCE; LOCAL EXISTENCE; BEHAVIOR; EQUATIONS; TIME; NONEXISTENCE; BOUNDS;
D O I
10.1007/s00030-024-00952-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish new and optimal estimates for the existence time of the maximal solutions to the nonlinear parabolic system partial derivative(t)u = Delta u + |v|(p-1)v, partial derivative(t)v=Delta v + |u|(q-1)u, q >= p >= 1, q > 1 with initial values in Lebesgue or weighted Lebesgue spaces. The lower-bound estimates hold without any restriction on the sign or the size of the components of the initial data. To prove the upper-bound estimates, necessary conditions for the existence of nonnegative solutions are established. These necessary conditions allow us to give new sufficient conditions for finite time blow-up with initial values having critical decay at infinity.
引用
收藏
页数:44
相关论文
共 50 条