A Classification Catalog of Periodic Variable Stars for LAMOST DR9 Based on Machine Learning

被引:0
|
作者
Qiao, Peiyun [1 ,2 ,3 ]
Xu, Tingting [4 ]
Wang, Feng [1 ,2 ,3 ]
Mei, Ying [1 ,2 ,3 ]
Deng, Hui [1 ,3 ]
Tan, Lei [1 ,2 ,3 ]
Liu, Chao [2 ,5 ,6 ]
机构
[1] Guangzhou Univ, Ctr Astrophys, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Great Bay Ctr Natl Astron Data Ctr, Guangzhou 510006, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[4] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650504, Yunnan, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Chinese Acad Sci, Key Lab Space Astron & Technol, Natl Astron Observ, Beijing 100101, Peoples R China
来源
基金
美国国家科学基金会;
关键词
ASAS-SN CATALOG; LARGE-MAGELLANIC-CLOUD; SKY; VARIABILITY; SEARCH; PHOTOMETRY; CANDIDATES; ALGORITHM; PACKAGE; PROJECT;
D O I
10.3847/1538-4365/ad3452
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Identifying and classifying variable stars is essential to time-domain astronomy. The Large Area Multi-Object Fiber Optic Spectroscopic Telescope (LAMOST) acquired a large amount of spectral data. However, there is no corresponding variable source-related information in the data, constraining LAMOST data utilization for scientific research. In this study, we systematically investigated variable source classification methods for LAMOST data. We constructed a 10-class classification model using three mainstream machine-learning methods. Through performance comparison, we chose the LightGBM and XGBoost models. We further identified variable source candidates in the r band in LAMOST DR9 and obtained 281,514 variable source candidates with probabilities greater than 95%. Subsequently, we filtered out the sources of periodic variable sources using the generalized Lomb-Scargle periodogram and classified these periodic variable sources using the classification model. Finally, we propose a reliable periodic variable star catalog containing 176,337 stars with specific types.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An Ap Star Catalog Based on LAMOST DR9
    Shi, Fangfei
    Zhang, Huawei
    Fu, Jianning
    Kurtz, Donald
    Xiang, Maosheng
    [J]. ASTROPHYSICAL JOURNAL, 2023, 943 (02):
  • [2] Identification of Carbon Stars in LAMOST DR9 Based on Deep Learning
    He, YiMing
    Cao, Zhong
    Deng, Hui
    Wang, Feng
    Mei, Ying
    Tan, Lei
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 274 (01):
  • [3] Value-added Catalog of M-giant Stars in LAMOST DR9
    Li, Jing
    Long, Lin
    Zhong, Jing
    Tang, Lin
    Zhang, Bo
    Qin, Songmei
    Chen, Yirong
    Yan, Zhengzhou
    Chen, Li
    Xue, Xiang-Xiang
    Hou, Jinliang
    Shi, Jian-Rong
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 266 (01):
  • [4] Atmospheric Parameters and Kinematic Information for the M Giant Stars from LAMOST DR9
    Qiu, Dan
    Tian, Hao
    Li, Jing
    Liu, Chao
    Long, Lin
    Shi, Jian-Rong
    Yang, Ming
    Zhang, Bo
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (05)
  • [5] Atmospheric Parameters and Kinematic Information for the M Giant Stars from LAMOST DR9
    Dan Qiu
    Hao Tian
    Jing Li
    Chao Liu
    Lin Long
    Jian-Rong Shi
    Ming Yang
    Bo Zhang
    [J]. Research in Astronomy and Astrophysics, 2023, 23 (05) : 80 - 92
  • [6] S-type Stars Discovered in Medium-resolution Spectra of LAMOST DR9
    Chen, Jing
    Luo, A-Li
    Li, Yin-Bi
    Chen, Xiang-Lei
    Wang, Rui
    Li, Shuo
    Du, Bing
    Ma, Xiao-Xiao
    [J]. ASTROPHYSICAL JOURNAL, 2022, 931 (02):
  • [7] Very metal-poor stars I: a catalogue derived from LAMOST DR9
    Hou, Xiaokun
    Zhao, Gang
    Li, Haining
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 532 (01) : 1099 - 1111
  • [8] Physical Parameters and Magnetic Activity of M-type Stars Based on the LAMOST DR9, SDSS, and TESS Surveys
    Li, Wenjie
    Zhang, Li-yun
    Su, Tianhao
    Han, Xianming L.
    Misra, Prabhakar
    Pi, Qingfeng
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 274 (02):
  • [9] Minute-cadence observations of the LAMOST Fields with the TMTS - V. Machine learning classification of TMTS catalogues of periodic variable stars
    Guo, Fangzhou
    Lin, Jie
    Wang, Xiaofeng
    Chen, Xiaodian
    Li, Tanda
    Chen, Liyang
    Xia, Qiqi
    Mo, Jun
    Xi, Gaobo
    Zhang, Jicheng
    Liu, Qichun
    Jiang, Xiaojun
    Yan, Shengyu
    Peng, Haowei
    Liu, Jialian
    Li, Wenxiong
    Lin, Weili
    Xiang, Danfeng
    Ma, Xiaoran
    Cai, Yongzhi
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (04) : 6997 - 7015
  • [10] Visit Nearby Halo Substructures Using LAMOST DR9 MRS Data
    Tang, Xin-Zhe
    Zhao, Jing-Kun
    Yang, Yong
    Ye, Xian-Hao
    Zhao, Gang
    Gao, Qi
    [J]. ASTROPHYSICAL JOURNAL, 2024, 965 (01):