Generation of the CMB cosmic birefringence through axion-like particles, sterile and active neutrinos

被引:0
|
作者
Mahmoudi, Somayyeh [1 ]
Sadegh, Mahdi [2 ]
Khodagholizadeh, Jafar [3 ]
Motie, Iman [4 ,5 ]
Xue, She-Sheng [5 ]
Blanchard, Alain [4 ,5 ]
机构
[1] Shiraz Univ, Coll Sci, Phys Dept, Shiraz 71454, Iran
[2] Inst Res Fundamental Sci IPM, Sch Astron, POB 19395-5531, Tehran, Iran
[3] Farhangian Univ, Dept Phys Educ, POB 14665-889,889, Tehran, Iran
[4] Univ Toulouse, UPS OMP, IRAP, CNRS, 14 Ave Edouard Belin, F-31400 Toulouse, France
[5] Univ Rome Sapienza, ICRANet & Dept Phys, Ple A Moro 5, I-00185 Rome, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 06期
关键词
CP CONSERVATION; DARK-MATTER; POLARIZATION; MASSES; MIXINGS; MODELS;
D O I
10.1140/epjc/s10052-024-13004-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The cosmic birefringence (CB) angle refers to the rotation of the linear polarization plane of Cosmic Microwave Background (CMB) radiations when parity-violating theories are considered. We analyzed the Quantum Boltzmann equation for an ensemble of CMB photons interacting with the right-handed sterile neutrino dark matter (DM) and axion-like particles (ALPs) DM in the presence of the scalar metric perturbation. We used the birefringence angle of CMB to study those probable candidates of DM. It is shown that the CB angle contribution of sterile neutrino is much less that two other sources considered here. Next, we combined the results of the cosmic neutrinos' contribution and the contribution of the ALPs to producing the CMB birefringence and discussed the uncertainty on the parameter space of axions caused by the share of CMB-cosmic neutrino interaction in generating this effect. Finally, we plotted the EB power spectrum of the CMB and showed that this spectrum behaves differently in the presence of cosmic neutrinos and ALPs interactions in small l. Hence, future observed data for C EB l , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{l}_{EB},$$\end{document} will help us to distinguish the CB angle value due to the various sources of its production.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Searching for axion-like particles through CMB birefringence from string-wall networks
    Jain, Mudit
    Hagimoto, Ray
    Long, Andrew J.
    Amin, Mustafa A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (10):
  • [2] Probing sterile neutrinos and axion-like particles from the Galactic halo with eROSITA
    Dekker, Ariane
    Peerbooms, Ebo
    Zimmer, Fabian
    Ng, Kenny C. Y.
    Ando, Shin'ichiro
    [J]. 37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [3] Axions/Axion-like particles and the CMB asymmetric dipole
    Yang, Qiaoli
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (13):
  • [4] Axions and axion-like particles
    Massó, E
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 114 : 67 - 73
  • [5] Experimental Searches for the Axion and Axion-Like Particles
    Graham, Peter W.
    Irastorza, Igor G.
    Lamoreaux, Steven K.
    Lindner, Axel
    van Bibber, Karl A.
    [J]. ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 65, 2015, 65 : 485 - 514
  • [6] Axion-like particles and recent observations of the cosmic infrared background radiation
    Kohri, Kazunori
    Kodama, Hideo
    [J]. PHYSICAL REVIEW D, 2017, 96 (05)
  • [7] Discovering Axion-Like Particles Using Cosmic Microwave Background as the Backlight
    S. Mukherjee
    [J]. Astronomy Reports, 2021, 65 : 995 - 1001
  • [8] Discovering Axion-Like Particles Using Cosmic Microwave Background as the Backlight
    Mukherjee, S.
    [J]. ASTRONOMY REPORTS, 2021, 65 (10) : 995 - 1001
  • [9] Photons to axion-like particles conversion in Active Galactic Nuclei
    Tavecchio, Fabrizio
    Roncadelli, Marco
    Galanti, Giorgio
    [J]. PHYSICS LETTERS B, 2015, 744 : 375 - 379
  • [10] Flavor probes of axion-like particles
    Martin Bauer
    Matthias Neubert
    Sophie Renner
    Marvin Schnubel
    Andrea Thamm
    [J]. Journal of High Energy Physics, 2022