Making inferences in incomplete Bayesian networks: A Dempster-Shafer belief function approach

被引:4
|
作者
Shenoy, Prakash P. [1 ]
机构
[1] Univ Kansas, Sch Business, Analyt Informat & Operat Area, 1654 Naismith Dr,Capitol Fed Hall, Lawrence, KS 66045 USA
关键词
Incomplete Bayesian networks; Dempster-Shafer belief function theory; Conditional belief functions; Smets' conditional embedding; CONDITIONAL-INDEPENDENCE; PROBABILITIES; COMPUTATION;
D O I
10.1016/j.ijar.2023.108967
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How do you make inferences from a Bayesian network (BN) model with missing information? For example, we may not have priors for some variables or may not have conditionals for some states of the parent variables. It is well-known that the Dempster Shafer (D-S) belief function theory is a generalization of probability theory. So, a solution is to embed an incomplete BN model in a D-S belief function model, omit the missing data, and then make inferences from the belief function model. We will demonstrate this using an implementation of a local computation algorithm for D-S belief function models called the "Belief function machine." One advantage of this approach is that we get interval estimates of the probabilities of interest. Using Laplacian (equally likely) or maximum entropy priors or conditionals for missing data in a BN may lead to point estimates for the probabilities of interest, masking the uncertainty in these estimates. Bayesian reasoning cannot reason from an incomplete model. A Bayesian sensitivity analysis of the missing parameters is not a substitute for a belief-function analysis.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Generalization of Bayesian Inference in the Dempster-Shafer Belief Theoretic Framework
    Heendeni, J. N.
    Premaratne, K.
    Murthi, M. N.
    Uscinski, J.
    Scheutz, M.
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 798 - 804
  • [2] Entropy for evaluation of Dempster-Shafer belief function models
    Jirousek, Radim
    Kratochvil, Vaclav
    Shenoy, Prakash P.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 151 : 164 - 181
  • [3] Overview of Dempster-Shafer and Belief Function Tracking Methods
    Blasch, Erik
    Dezert, Jean
    Pannetier, B.
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XXII, 2013, 8745
  • [4] On Dempster-Shafer and Bayesian detectors
    Ghosh, Donna
    Pados, Dimitris A.
    Acharya, Raj
    Llinas, James
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2006, 36 (05): : 688 - 693
  • [5] Bayesian and Dempster-Shafer fusion
    Subhash Challa
    Don Koks
    [J]. Sadhana, 2004, 29 : 145 - 174
  • [6] Bayesian and Dempster-Shafer fusion
    Subhash Challa
    Don Koks
    [J]. Sadhana, 2007, 32 : 277 - 277
  • [7] Bayesian and Dempster-Shafer fusion
    Challa, S
    Koks, D
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2004, 29 (2): : 145 - 174
  • [8] DECISION MAKING WITH DEMPSTER-SHAFER BELIEF STRUCTURE AND THE OWAWA OPERATOR
    Merigo, Jose M.
    Engemann, Kurt J.
    Palacios-Marques, Daniel
    [J]. TECHNOLOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMY, 2013, 19 : S100 - S118
  • [9] Dempster-Shafer belief structures for decision making under uncertainty
    Yager, Ronald R.
    Alajlan, Naif
    [J]. KNOWLEDGE-BASED SYSTEMS, 2015, 80 : 58 - 66
  • [10] Predicting fault prone modules by the Dempster-Shafer belief networks
    Guo, L
    Cukic, B
    Singh, H
    [J]. 18TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, PROCEEDINGS, 2003, : 249 - 252