Multisensor Maneuvering Target Fusion Tracking Using Interacting Multiple Model

被引:1
|
作者
Zhao, Baofeng [1 ]
机构
[1] Taiyuan Univ Technol, Coll Min Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
maneuvering target tracking; distributed information fusion; interacting multiple model; cross-correlation; Gaussian mixture; SYSTEMS;
D O I
10.3103/S0146411624700184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For multisensor maneuvering target tracking, two important factors affecting the tracking performance are: (1) the uncertainty of the target dynamics model; (2) the cross-correlation of local estimation errors across sensors. For these problems, a new model-level information fusion algorithm based on interacting multiple model (IMM) is proposed. First, in each local sensor, the IMM algorithm is used to deal with the problem of uncertainty of the dynamics model caused by the target maneuver, and the obtained model-level information (Gaussian mixture probability density) instead of the state estimation after model mixing is sent to the fusion center. This effectively avoids the loss of information in the process of model mixing. Second, for the correlation between local estimates, a new model level information decorrelation algorithm for IMM is proposed to obtain decorrelated fusion information. Finally, in the fusion center, the fusion of the de-correlated estimation information is completed by the naive fusion method. The simulation experiments verify the performance of the proposed algorithm.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [1] Multisensor tracking of a maneuvering target using multiple maneuver model PDA
    Okada, T
    Kosuge, Y
    MF '96 - 1996 IEEE/SICE/RSJ INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, 1996, : 557 - 564
  • [2] Multisensor fusion algorithms for maneuvering target tracking
    Fong, Li-Wei
    Fan, Chan-Yu
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON E-LEARNING IN INDUSTRIAL ELECTRONICS, 2006, : 140 - +
  • [3] Multisensor fusion algorithms for maneuvering target tracking
    Fong, Li-Wei
    Fan, Chan-Yu
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON E-LEARNING IN INDUSTRIAL ELECTRONICS, 2006, : 80 - +
  • [4] Maneuvering Target Tracking using the Autoencoder-Interacting Multiple Model Filter
    Vedula, Kirty
    Weiss, Matthew L.
    Paffenroth, Randy C.
    Uzarski, Joshua R.
    Brown, D. Richard, III
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1512 - 1517
  • [5] ADAPTIVE INTERACTING MULTIPLE MODEL ALGORITHM FOR TRACKING A MANEUVERING TARGET
    MUNIR, A
    ATHERTON, DP
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1995, 142 (01) : 11 - 17
  • [6] A novel interacting multiple model algorithm for maneuvering target tracking
    Li, Bo (leeboo@yeah.net), 1775, ICIC Express Letters Office (07):
  • [7] Distributed interacting multiple model H∞ filtering fusion for multiplatform maneuvering target tracking in clutter
    Li, Wenling
    Jia, Yingmin
    SIGNAL PROCESSING, 2010, 90 (05) : 1655 - 1668
  • [8] Tracking a maneuvering target with multisensor
    Song, XQ
    Liu, Q
    Sun, ZK
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS, 1997, 3067 : 206 - 211
  • [9] TRACKING A MANEUVERING TARGET USING INPUT ESTIMATION VERSUS THE INTERACTING MULTIPLE MODEL ALGORITHM
    BARSHALOM, Y
    CHANG, KC
    BLOM, HAP
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1989, 25 (02) : 296 - 300
  • [10] Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm
    Bar-Shalom, Y.
    Chang, K.C.
    Blom, H.A.P.
    IEEE Transactions on Aerospace and Electronic Systems, 1992, v (0n) : 296 - 300