YOLO-LF: a lightweight multi-scale feature fusion algorithm for wheat spike detection

被引:0
|
作者
Zhou, Shuren [1 ]
Long, Shengzhen [1 ]
机构
[1] Changsha Univ Sci & Technol, Changsha, Peoples R China
关键词
YOLO-LF; Wheat spike detection; Lightweight; Multi-scale; Feature fusion;
D O I
10.1007/s11554-024-01529-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wheat is one of the most significant crops in China, as its yield directly affects the country's food security. Due to its dense, overlapping, and relatively fuzzy distribution, wheat spikes are prone to being missed in practical detection. Existing object detection models suffer from large model size, high computational complexity, and long computation times. Consequently, this study proposes a lightweight real-time wheat spike detection model called YOLO-LF. Initially, a lightweight backbone network is improved to reduce the model size and lower the number of parameters, thereby improving the runtime speed. Second, the structure of the neck is redesigned in the context of the wheat spike dataset to enhance the feature extraction capability of the network for wheat spikes and to achieve lightweightness. Finally, a lightweight detection head was designed to significantly reduce the FLOPs of the model and achieve further lightweighting. Experimental results on the test set indicate that the size of our model is 1.7 MB, the number of parameters is 0.76 M, and the FLOPs are 2.9, which represent reductions of 73, 74, and 64% compared to YOLOv8n, respectively. Our model demonstrates a latency of 8.6 ms and an FPS of 115 on Titan X, whereas YOLOv8n has a latency of 10.2 ms and an FPS of 97 on the same hardware. In contrast, our model is more lightweight and faster to detect, while the mAP@0.5 only decreases by 0.9%, outperforming YOLOv8 and other mainstream detection networks in overall performance. Consequently, our model can be deployed on mobile devices to provide effective assistance in the real-time detection of wheat spikes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] LFF-YOLO: A YOLO Algorithm With Lightweight Feature Fusion Network for Multi-Scale Defect Detection
    Qian, Xiaohong
    Wang, Xu
    Yang, Shengying
    Lei, Jingsheng
    IEEE ACCESS, 2022, 10 : 130339 - 130349
  • [2] Lightweight Face Detection Algorithm with Multi-scale Feature Fusion
    Wang J.
    Song X.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (06): : 507 - 515
  • [3] Lightweight Fire Detection Algorithm Based on Multi-Scale Feature Fusion
    Yang, Guowei
    Liu, Xuan
    Gao, Min
    Xu, Di
    Computer Engineering and Applications, 60 (23): : 229 - 237
  • [4] A Lightweight YOLO Object Detection Algorithm Based on Bidirectional Multi-Scale Feature Enhancement
    Liu, Qunpo
    Zhang, Jingwen
    Zhang, Zhuoran
    Bu, Xuhui
    Hanajima, Naohiko
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (05)
  • [5] Underwater Target Detection Lightweight Algorithm Based on Multi-Scale Feature Fusion
    Chen, Liang
    Yang, Yuyi
    Wang, Zhenheng
    Zhang, Jian
    Zhou, Shaowu
    Wu, Lianghong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (02)
  • [6] LMSD-YOLO: A Lightweight YOLO Algorithm for Multi-Scale SAR Ship Detection
    Guo, Yue
    Chen, Shiqi
    Zhan, Ronghui
    Wang, Wei
    Zhang, Jun
    REMOTE SENSING, 2022, 14 (19)
  • [7] Electrode defect YOLO detection algorithm based on attention mechanism and multi-scale feature fusion
    Li Y.-W.
    Sun H.-R.
    Hu Y.-M.
    Han Y.-J.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (09): : 2578 - 2586
  • [8] A Lightweight Detection Algorithm for Unmanned Surface Vehicles Based on Multi-Scale Feature Fusion
    Zhang, Lei
    Du, Xiang
    Zhang, Renran
    Zhang, Jian
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [9] A multi-scale feature fusion target detection algorithm
    Dong, Chong
    Li, Jingmei
    Wang, Jiaxiang
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [10] Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
    Zhang, Minghua
    Xu, Shubo
    Song, Wei
    He, Qi
    Wei, Quanmiao
    REMOTE SENSING, 2021, 13 (22)