HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data

被引:0
|
作者
Ma, Yuanyuan [1 ,2 ]
Liu, Lifang [3 ]
Zhao, Yongbiao [1 ,4 ]
Hang, Bo [1 ]
Zhang, Yanduo [1 ]
机构
[1] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang, Peoples R China
[2] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehic, Xiangyang, Peoples R China
[3] Hubei Univ Arts & Sci, Sch Phys & Elect Engn, Xiangyang, Peoples R China
[4] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China
来源
BMC GENOMICS | 2024年 / 25卷 / 01期
关键词
Hypergraph convolutional network; Spatial transcriptomics; Single cell multi-omics; Integrative analysis; CELL; SEQ;
D O I
10.1186/s12864-024-10469-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis.Results Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity.Conclusions HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Integrative analysis methods for spatial transcriptomics
    Lu, Shaina
    Furth, Daniel
    Gillis, Jesse
    NATURE METHODS, 2021, 18 (11) : 1282 - 1283
  • [2] Integrative analysis methods for spatial transcriptomics
    Shaina Lu
    Daniel Fürth
    Jesse Gillis
    Nature Methods, 2021, 18 : 1282 - 1283
  • [3] Discrete Representation Learning for Modeling Imaging-based Spatial Transcriptomics Data
    Yarlagadda, Dig Vijay Kumar
    Massagu, Joan
    Leslie, Christina
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3848 - 3857
  • [4] Unsupervised spatially embedded deep representation of spatial transcriptomics
    Hang Xu
    Huazhu Fu
    Yahui Long
    Kok Siong Ang
    Raman Sethi
    Kelvin Chong
    Mengwei Li
    Rom Uddamvathanak
    Hong Kai Lee
    Jingjing Ling
    Ao Chen
    Ling Shao
    Longqi Liu
    Jinmiao Chen
    Genome Medicine, 16
  • [5] Unsupervised spatially embedded deep representation of spatial transcriptomics
    Xu, Hang
    Fu, Huazhu
    Long, Yahui
    Ang, Kok Siong
    Sethi, Raman
    Chong, Kelvin
    Li, Mengwei
    Uddamvathanak, Rom
    Lee, Hong Kai
    Ling, Jingjing
    Chen, Ao
    Shao, Ling
    Liu, Longqi
    Chen, Jinmiao
    GENOME MEDICINE, 2024, 16 (01)
  • [6] DeepST: identifying spatial domains in spatial transcriptomics by deep learning
    Xu, Chang
    Jin, Xiyun
    Wei, Songren
    Wang, Pingping
    Luo, Meng
    Xu, Zhaochun
    Yang, Wenyi
    Cai, Yideng
    Xiao, Lixing
    Lin, Xiaoyu
    Liu, Hongxin
    Cheng, Rui
    Pang, Fenglan
    Chen, Rui
    Su, Xi
    Hu, Ying
    Wang, Guohua
    Jiang, Qinghua
    NUCLEIC ACIDS RESEARCH, 2022, 50 (22) : E131
  • [7] Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data
    Aaron M. Smith
    Jonathan R. Walsh
    John Long
    Craig B. Davis
    Peter Henstock
    Martin R. Hodge
    Mateusz Maciejewski
    Xinmeng Jasmine Mu
    Stephen Ra
    Shanrong Zhao
    Daniel Ziemek
    Charles K. Fisher
    BMC Bioinformatics, 21
  • [8] Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data
    Smith, Aaron M.
    Walsh, Jonathan R.
    Long, John
    Davis, Craig B.
    Henstock, Peter
    Hodge, Martin R.
    Maciejewski, Mateusz
    Mu, Xinmeng Jasmine
    Ra, Stephen
    Zhao, Shanrong
    Ziemek, Daniel
    Fisher, Charles K.
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [9] FWNetAE: Spatial Representation Learning for Full Waveform Data Using Deep Learning
    Shinohara, Takayuki
    Xiu, Haoyi
    Matsuoka, Masashi
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019), 2019, : 259 - 266
  • [10] DIST: spatial transcriptomics enhancement using deep learning
    Zhao, Yanping
    Wang, Kui
    Hu, Gang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)