A Conjecture Generalizing Thomassen's Chord Conjecture in Graph Theory

被引:0
|
作者
Zhan, Xingzhi [1 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Longest cycle; Longest path; Chord in a cycle; k-connected graph;
D O I
10.1007/s41980-024-00909-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Thomassen's chord conjecture from 1976 states that every longest cycle in a 3-connected graph has a chord. This is one of the most important unsolved problems in graph theory. We pose a new conjecture which implies Thomassen's conjecture. It involves bound vertices in a longest path between two vertices in a k-connected graph. We also give supporting evidence and analyze a special case. The purpose of making this new conjecture is to explore the surroundings of Thomassen's conjecture.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] On the Thomassen's conjecture
    Li, JP
    JOURNAL OF GRAPH THEORY, 2001, 37 (03) : 168 - 180
  • [2] A RELATIONSHIP BETWEEN THOMASSEN'S CONJECTURE AND BONDY'S CONJECTURE
    Cada, Roman
    Chiba, Shuya
    Ozeki, Kenta
    Vrana, Pete
    Yoshimoto, Kiyoshi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 26 - 35
  • [3] A note on Thomassen's conjecture
    Dellamonica, Domingos, Jr.
    Roedl, Vojtech
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (06) : 509 - 515
  • [4] On a Conjecture of Thomassen
    Delcourt, Michelle
    Ferber, Asaf
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [5] Contractible subgraphs, Thomassen's conjecture and the dominating cycle conjecture for snarks
    Broersma, Hajo
    Fijavz, Gasper
    Kaiser, Tomas
    Kuzel, Roman
    Ryjacek, Zdenek
    Vrana, Petr
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6064 - 6077
  • [6] On a conjecture of Thomassen and Toft
    Kriesell, M
    JOURNAL OF GRAPH THEORY, 1999, 32 (02) : 118 - 122
  • [7] A proof of the Barat Thomassen conjecture
    Bensmail, Julien
    Harutyunyan, Ararat
    Le, Tien-Nam
    Merker, Martin
    Thomasse, Stephan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 124 : 39 - 55
  • [8] Counterexamples to Thomassen's Conjecture on Decomposition of Cubic Graphs
    Bellitto, Thomas
    Klimosova, Tereza
    Merker, Martin
    Witkowski, Marcin
    Yuditsky, Yelena
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2595 - 2599
  • [9] How to build a pillar: A proof of Thomassen's conjecture
    Fernandez, Irene Gil
    Liu, Hong
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 162 : 13 - 33
  • [10] Counterexamples to Thomassen’s Conjecture on Decomposition of Cubic Graphs
    Thomas Bellitto
    Tereza Klimošová
    Martin Merker
    Marcin Witkowski
    Yelena Yuditsky
    Graphs and Combinatorics, 2021, 37 : 2595 - 2599