New Insights for the Multivariate Square-Root Lasso

被引:0
|
作者
Molstad, Aaron J. [1 ]
机构
[1] Department of Statistics and Genetics Institute, University of Florida, Gainesville,FL,32611, United States
基金
美国国家科学基金会;
关键词
Inverse problems - Error analysis - Covariance matrix - Regression analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We study the multivariate square-root lasso, a method for fitting the multivariate response linear regression model with dependent errors. This estimator minimizes the nuclear norm of the residual matrix plus a convex penalty. Unlike existing methods that require explicit estimates of the error precision (inverse covariance) matrix, the multivariate square-root lasso implicitly accounts for error dependence and is the solution to a convex optimization problem. We establish error bounds which reveal that like the univariate square-root lasso, the multivariate square-root lasso is pivotal with respect to the unknown error covariance matrix. In addition, we propose a variation of the alternating direction method of multipliers algorithm to compute the estimator and discuss an accelerated first order algorithm that can be applied in certain cases. In both simulation studies and a genomic data application, we show that the multivariate square-root lasso can outperform more computationally intensive methods that require explicit estimation of the error precision matrix. © 2022 Aaron J. Molstad.
引用
收藏
相关论文
共 50 条
  • [1] New Insights for the Multivariate Square-Root Lasso
    Molstad, Aaron J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [2] The Square-Root Lasso
    van de Geer, Sara
    ESTIMATION AND TESTING UNDER SPARSITY: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLV - 2015, 2016, 2159 : 27 - 39
  • [3] Improved bounds for Square-Root Lasso and Square-Root Slope
    Derumigny, Alexis
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 741 - 766
  • [4] Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso
    Bertrand, Quentin
    Massias, Mathurin
    Gramfort, Alexandre
    Salmon, Joseph
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Robust sketching for multiple square-root LASSO problems
    Vu Pham
    El Ghaoui, Laurent
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 753 - 761
  • [6] Square-Root Lasso With Nonconvex Regularization: An ADMM Approach
    Shen, Xinyue
    Chen, Laming
    Gu, Yuantao
    So, H. C.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (07) : 934 - 938
  • [7] Selective inference with unknown variance via the square-root lasso
    Tian, Xiaoying
    Loftus, Joshua R.
    Taylor, Jonathan E.
    BIOMETRIKA, 2018, 105 (04) : 755 - 768
  • [8] PIVOTAL ESTIMATION VIA SQUARE-ROOT LASSO IN NONPARAMETRIC REGRESSION
    Belloni, Alexandre
    Chernozhukov, Victor
    Wang, Lie
    ANNALS OF STATISTICS, 2014, 42 (02): : 757 - 788
  • [9] The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms
    Bunea, Florentina
    Lederer, Johannes
    She, Yiyuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) : 1313 - 1325
  • [10] Connection between SPICE and Square-Root LASSO for sparse parameter estimation
    Babu, Prabhu
    Stoica, Petre
    SIGNAL PROCESSING, 2014, 95 : 10 - 14