AN A PRIORI ERROR ANALYSIS OF A PROBLEM INVOLVING MIXTURES OF CONTINUA WITH GRADIENT ENRICHMENT

被引:0
|
作者
Bazarra, Noelia [1 ]
Fernandez, Jose R. [1 ]
Magana, Antonio [2 ]
Magana, Marc [3 ]
Quintanilla, Ramon [2 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada1, Campus Lagoas Marcosende S-N, Vigo 36310, Spain
[2] ESEIAAT UPC, Dept Matemat, Colom 11, Barcelona 08222, Spain
[3] Univ Autenoma Barcelona, Fac Ciencies, Barcelona 08193, Spain
关键词
Mixtures; strain gradient; finite elements; discrete energy decay; a priori error estimates; numerical simulations; EXPONENTIAL DECAY; THERMOELASTIC MIXTURE; INTERACTING CONTINUA; EXISTENCE;
D O I
10.4208/ijnam2024-1006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study a strain gradient problem involving mixtures. The variational formulation is written as a first -order in time coupled system of parabolic variational equations. An existence and uniqueness result is recalled. Then, we introduce a fully discrete approximation by using the finite element method and the implicit Euler scheme. A discrete stability property and a priori error estimates are proved. Finally, some one- and two-dimensional numerical simulations are performed.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [1] An a priori error analysis of a porous strain gradient model
    Baldonedo, Jacobo
    Fernandez, Jose R.
    Magana, Antonio
    Quintanilla, Ramon
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (01):
  • [2] An a priori error analysis of an HDG method for an eddy current problem
    Bustinza, Rommel
    Lopez-Rodriguez, Bibiana
    Osorio, Mauricio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2795 - 2810
  • [3] A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem
    Anaya, Veronica
    Mora, David
    Oyarzua, Ricardo
    Ruiz-Baier, Ricardo
    NUMERISCHE MATHEMATIK, 2016, 133 (04) : 781 - 817
  • [4] A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem
    Verónica Anaya
    David Mora
    Ricardo Oyarzúa
    Ricardo Ruiz-Baier
    Numerische Mathematik, 2016, 133 : 781 - 817
  • [5] Regularity and a priori error analysis of a Ventcel problem in polyhedral domains
    Nicaise, Serge
    Li, Hengguang
    Mazzucato, Anna
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1625 - 1636
  • [6] A porous thermoelastic problem: An a priori error analysis and computational experiments
    Fernandez, J. R.
    Masid, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 305 : 117 - 135
  • [7] A priori error analysis of virtual element method for contact problem
    Wang, Fei
    Reddy, B. Daya
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [8] Analysis of a contact problem involving thermoelastic mixtures
    Bazarra, N.
    Bochicchio, I.
    Casarejos, E.
    Fernandez, J. R.
    Naso, M. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) : 2032 - 2055
  • [9] A PRIORI FINITE ELEMENT ERROR ANALYSIS FOR OPTIMAL CONTROL OF THE OBSTACLE PROBLEM
    Meyer, Christian
    Thoma, Oliver
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 605 - 628
  • [10] An a priori error analysis of a type III thermoelastic problem with two porosities
    Bazarra, Noelia
    Fernandez, Jose R.
    Quintanilla, Ramon
    Suarez, Sofia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1067 - 1084