On the parameters of some LCD BCH codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} with length (qm+1)/λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q^m+1)/\lambda $$\end{document}

被引:0
|
作者
Hanglong Zhang
Xiwang Cao
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] MIIT,Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)
关键词
BCH code; LCD code; Cyclic code; Cyclotomic coset; 94B05; 94A05;
D O I
10.1007/s12095-024-00697-z
中图分类号
学科分类号
摘要
As a particular subclass of cyclic codes, BCH codes have wide applications in storage devices, communication systems, consumer electronics and other fields. However, parameters of BCH codes are unknown in general. In this paper, we investigate parameters of BCH codes of length qm+1λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q^m+1}{\lambda }$$\end{document} where λ∣q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \mid q+1$$\end{document}.Some new techniques are employed to study the coset leaders. For any odd prime power q and m=4,8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=4,8$$\end{document}, or m≥12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 12$$\end{document} and m≡4(mod8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\equiv 4~ (\textrm{mod}~ 8)$$\end{document}, the second, the third and the fourth largest coset leaders modulo qm+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^m+1$$\end{document} are determined, and the dimensions of some BCH codes of length qm+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^m+1$$\end{document} with large designed distances are given. For 1<λ<q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\lambda <q+1$$\end{document}, the first few largest coset leaders and the coset leaders modulo qm+1λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q^m+1}{\lambda }$$\end{document} in the range 1 to q⌊(m+1)/2⌋λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{ q^{\lfloor (m+1)/2\rfloor }}{\lambda }$$\end{document} are studied, and the dimensions of some BCH codes of length qm+1λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q^m+1}{\lambda }$$\end{document} are given as well. The BCH codes presented in this paper are LCD codes and have a sharper lower bound on the minimum distance than the well-known BCH bound.
引用
收藏
页码:745 / 765
页数:20
相关论文
共 50 条