Physicochemical Characterization and Delignification Enhancement of Lignocellulosic Biomass for Sustainable Bioenergy

被引:0
|
作者
Prasad, B. Rabi [1 ]
Suman, P. [2 ]
Padhi, R. K. [3 ]
机构
[1] GIET Univ, Dept Biotechnol, Gunupur 765022, Odisha, India
[2] Centurion Univ Technol & Management, MS Swaminathan Sch Agr, Dept Biotechnol, R Sitapur 761211, Odisha, India
[3] GIET Univ, Dept Chem Engn, Gunupur 765022, Odisha, India
关键词
Agricultural crop residues; Proximate analysis; Ultimate analysis; Chemical pretreatment; Bioethanol; Crystallinity; ENZYMATIC-HYDROLYSIS; PRETREATMENT;
D O I
10.1007/s40995-024-01651-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study provides a thorough examination of the biofuel potential of three unique lignocellulosic crop residues, including rice straw (Oryza sativa), corn stalk (Zea mays), and sugarcane bagasse (Saccharum officinarum) of Odisha. In the investigation, we explored the compositional, thermal, and structural characteristics of these biomass sources to make clear their application for sustainable bioenergy production. Proximate analysis indicated variances in critical factors ranging from 5.9-14.8% (moisture content), 1.8-19.4% (ash content), 60-72.4% (volatile matter), and 9.6-14.7% (fixed carbon). Proximate analysis contributes to the various energy-generating capacities of these materials. An in-depth investigation of cellulose, hemicellulose, and lignin concentration revealed the promise of sugarcane bagasse as a cellulose-rich option for bioethanol synthesis. Thermochemical profiling using thermogravimetric and FTIR analysis revealed information about thermal stability and chemical changes, with pretreatment essential in increasing biomass accessibility and crystallinity. The significance of pretreatment-induced crystallinity for effective enzymatic hydrolysis and fermentable sugar generation was highlighted by X-ray diffraction (XRD). Overall, this study advances our understanding of the intricate relationships between biomass composition, structure, and bioenergy potential, offering valuable insights for developing sustainable biofuel production strategies.
引用
收藏
页码:843 / 853
页数:11
相关论文
共 50 条
  • [1] Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future
    Fatma, Shabih
    Hameed, Amir
    Noman, Muhammad
    Ahmed, Temoor
    Shahid, Muhammad
    Tariq, Mohsin
    Sohail, Imran
    Tabassum, Romana
    [J]. PROTEIN AND PEPTIDE LETTERS, 2018, 25 (02): : 148 - 163
  • [2] A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential
    Singh, Renu
    Shukla, Ashish
    Tiwari, Sapna
    Srivastava, Monika
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 32 : 713 - 728
  • [3] Review of physicochemical properties and analytical characterization of lignocellulosic biomass
    Cai, Junmeng
    He, Yifeng
    Yu, Xi
    Banks, Scott W.
    Yang, Yang
    Zhang, Xingguang
    Yu, Yang
    Liu, Ronghou
    Bridgwater, Anthony V.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 : 309 - 322
  • [4] Genetic manipulation of lignocellulosic biomass for bioenergy
    Wang, Peng
    Dudareva, Natalia
    Morgan, John A.
    Chapple, Clint
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 29 : 32 - 39
  • [5] Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan
    Abdullah, Aisha
    Ahmed, Ashfaq
    Akhter, Parveen
    Razzaq, Abdul
    Zafar, Muhammad
    Hussain, Murid
    Shahzad, Nasir
    Majeed, Khaliq
    Khurrum, Shahzad
    Abu Bakar, Muhammad Saifullah
    Park, Young-Kwon
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (11) : 1899 - 1906
  • [6] Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan
    Aisha Abdullah
    Ashfaq Ahmed
    Parveen Akhter
    Abdul Razzaq
    Muhammad Zafar
    Murid Hussain
    Nasir Shahzad
    Khaliq Majeed
    Shahzad Khurrum
    Muhammad Saifullah Abu Bakar
    Young-Kwon Park
    [J]. Korean Journal of Chemical Engineering, 2020, 37 : 1899 - 1906
  • [7] Mixed Enzyme Systems for Delignification of Lignocellulosic Biomass
    Woolridge, Elisa M.
    [J]. CATALYSTS, 2014, 4 (01) : 1 - 35
  • [8] Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses Recalcitrance and Enhancement Strategies
    Banu, Rajesh J.
    Sugitha, S.
    Kavitha, S.
    Kannah, Yukesh R.
    Merrylin, J.
    Kumar, Gopalakrishnan
    [J]. FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [9] LIGNOCELLULOSIC BIOMASS CHARACTERISTICS FOR BIOENERGY APPLICATION: AN OVERVIEW
    Akhtar, Nadeem
    Gupta, Kanika
    Goyal, Dinesh
    Goyal, Arun
    [J]. ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2019, 18 (02): : 367 - 383
  • [10] Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics
    Gupta, Rishi
    Mehta, Girija
    Khasa, Yogender Pal
    Kuhad, Ramesh Chander
    [J]. BIODEGRADATION, 2011, 22 (04) : 797 - 804