Large-Scale Traffic Signal Control Using Constrained Network Partition and Adaptive Deep Reinforcement Learning

被引:0
|
作者
Gu, Hankang [1 ,2 ]
Wang, Shangbo [1 ,3 ]
Ma, Xiaoguang [4 ]
Jia, Dongyao [1 ]
Mao, Guoqiang [5 ]
Lim, Eng Gee [1 ]
Wong, Cheuk Pong Ryan [6 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 3GJ, England
[3] Univ Sussex, Dept Engn & Design, Brighton BN1 9RH, East Sussex, England
[4] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[5] Xidian Univ, ISN State Key Lab, Xian 710126, Peoples R China
[6] Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China
关键词
Adaptive traffic signal control; multi-agent deep reinforcement learning; regional control;
D O I
10.1109/TITS.2024.3352446
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Multi-agent Deep Reinforcement Learning (MADRL) based traffic signal control lbecomes a popular research topic in recent years. To alleviate the scalability issue of completely centralized reinforcement learning (RL) techniques and the non-stationarity issue of completely decentralized RL techniques on large-scale traffic networks, some literature utilizes a regional control approach where the whole network is firstly partitioned into multiple disjoint regions, followed by applying the centralized RL approach to each region. However, the existing partitioning rules either have no constraints on the topology of regions or require the same topology for all regions. Meanwhile, no existing regional control approach explores the performance of optimal joint action in an exponentially growing regional action space when intersections are controlled by 4-phase traffic signals (EW, EWL, NS, NSL). In this paper, we propose a novel RL training framework named RegionLight to tackle the above limitations. Specifically, the topology of regions is firstly constrained to a star network which comprises one center and an arbitrary number of leaves. Next, the network partitioning problem is modeled as an optimization problem to minimize the number of regions. Then, an Adaptive Branching Dueling Q-Network (ABDQ) model is proposed to decompose the regional control task into several joint signal control sub-tasks corresponding to particular intersections. Subsequently, these sub-tasks maximize the regional benefits cooperatively. Finally, the global control strategy for the whole network is obtained by concatenating the optimal joint actions of all regions. Experimental results demonstrate the superiority of our proposed framework over all baselines under both real and synthetic scenarios in all evaluation metrics.
引用
下载
收藏
页码:7619 / 7632
页数:14
相关论文
共 50 条
  • [1] Cooperative Deep Reinforcement Learning for Large-Scale Traffic Grid Signal Control
    Tan, Tian
    Bao, Feng
    Deng, Yue
    Jin, Alex
    Dai, Qionghai
    Wang, Jie
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (06) : 2687 - 2700
  • [2] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [3] Large-Scale Traffic Signal Control Using a Novel Multiagent Reinforcement Learning
    Wang, Xiaoqiang
    Ke, Liangjun
    Qiao, Zhimin
    Chai, Xinghua
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (01) : 174 - 187
  • [4] Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chen, Chacha
    Wei, Hua
    Xu, Nan
    Zheng, Guanjie
    Yang, Ming
    Xiong, Yuanhao
    Xu, Kai
    Li, Zhenhui
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3414 - 3421
  • [5] Large-Scale Traffic Grid Signal Control with Regional Reinforcement Learning
    Chu, Tianshu
    Qu, Shuhui
    Wang, Jie
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 815 - 820
  • [6] Large-Scale Traffic Grid Signal Control Using Decentralized Fuzzy Reinforcement Learning
    Tan, Tian
    Chu, TianShu
    Peng, Bo
    Wang, Jie
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 1, 2018, 15 : 652 - 662
  • [7] Large-scale traffic control using autonomous vehicles and decentralized deep reinforcement learning
    Maske, Harshal
    Chu, Tianshu
    Kalabic, Uros
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3816 - 3821
  • [8] An Attention Reinforcement Learning-Based Strategy for Large-Scale Adaptive Traffic Signal Control System
    Han, Gengyue
    Liu, Xiaohan
    Wang, Hao
    Dong, Changyin
    Han, Yu
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2024, 150 (03)
  • [9] A Spatial-Temporal Deep Reinforcement Learning Model for Large-Scale Centralized Traffic Signal Control
    Yi, Chenglin
    Wu, Jia
    Ren, Yanyu
    Ran, Yunchuan
    Lou, Yican
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 275 - 280
  • [10] Large-Scale and Adaptive Service Composition Using Deep Reinforcement Learning
    Wang, Hongbing
    Gu, Mingzhu
    Yu, Qi
    Fei, Huanhuan
    Li, Jiajie
    Tao, Yong
    SERVICE-ORIENTED COMPUTING, ICSOC 2017, 2017, 10601 : 383 - 391