XDAI: A Tuning-free Framework for Exploiting Pre-trained Language Models in Knowledge Grounded Dialogue Generation

被引:4
|
作者
Yu, Jifan [1 ]
Zhang, Xiaohan [1 ,2 ]
Xu, Yifan [1 ]
Lei, Xuanyu [1 ]
Guan, Xinyu [3 ]
Zhang, Jing [4 ]
Hou, Lei [5 ,6 ]
Li, Juanzi [5 ,6 ]
Tang, Jie [5 ,6 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Zhipu AI, Beijing, Peoples R China
[3] Biendata, Beijing, Peoples R China
[4] Renmin Univ China, Sch Informat, Beijing, Peoples R China
[5] Tsinghua Univ, BNRist, Dept Comp Sci & Technol, Beijing, Peoples R China
[6] Tsinghua Univ, Inst Artificial Intelligence, KIRC, Beijing, Peoples R China
关键词
Pre-trained Model Exploitation; Dialogue System;
D O I
10.1145/3534678.3539135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale pre-trained language models (PLMs) have shown promising advances on various downstream tasks, among which dialogue is one of the most concerned. However, there remain challenges for individual developers to create a knowledge-grounded dialogue system upon such big models because of the expensive cost of collecting the knowledge resources for supporting the system as well as tuning these large models for the task. To tackle these obstacles, we propose XDAI, a knowledge-grounded dialogue system that is equipped with the prompt-aware tuning-free PLM exploitation and supported by the ready-to-use open-domain external knowledge resources plus the easy-to-change domain-specific mechanism. With XDAI, the developers can leverage the PLMs without any fine-tuning cost to quickly create the open-domain dialogue systems as well as easily customize their own domain-specific systems. Extensive experiments including human evaluation, Turing test, and online evaluation have demonstrated the competitive performance of XDAI compared with the state-of-the-art general PLMs and specific PLMs for dialogue. XDAI pilots studies on the exploitation of PLMs and made intriguing findings which could be inspiring for the future research on other PLM-based applications. Developers and related researchers can get access to our repository at https://github.com/THUDM/XDAI, which presents a series of APIs, incremental toolkits and chatbot service of XDAI platform.
引用
收藏
页码:4422 / 4432
页数:11
相关论文
共 50 条
  • [1] Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
    Zhao, Xueliang
    Wu, Wei
    Xu, Can
    Tao, Chongyang
    Zhao, Dongyan
    Yan, Rui
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 3377 - 3390
  • [2] Knowledge Grounded Pre-Trained Model For Dialogue Response Generation
    Wang, Yanmeng
    Rong, Wenge
    Zhang, Jianfei
    Ouyang, Yuanxin
    Xiong, Zhang
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] Knowledge Base Grounded Pre-trained Language Models via Distillation
    Sourty, Raphael
    Moreno, Jose G.
    Servant, Francois-Paul
    Tamine, Lynda
    [J]. 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 1617 - 1625
  • [4] An Investigation of Suitability of Pre-Trained Language Models for Dialogue Generation - Avoiding Discrepancies
    Zeng, Yan
    Nie, Jian-Yun
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 4481 - 4494
  • [5] Commonsense Knowledge Reasoning and Generation with Pre-trained Language Models: A Survey
    Bhargava, Prajjwal
    Ng, Vincent
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12317 - 12325
  • [6] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [7] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [8] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [9] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [10] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430