DiffusionDet: Diffusion Model for Object Detection

被引:39
|
作者
Chen, Shoufa [1 ]
Sun, Peize [1 ]
Song, Yibing [2 ,3 ]
Luo, Ping [1 ]
机构
[1] Univ Hong Kong, Hong Kong, Peoples R China
[2] Tencent AI Lab, Shenzhen, Peoples R China
[3] Fudan Univ, AI3 Inst, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1109/ICCV51070.2023.01816
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose DiffusionDet, a new framework that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. During the training stage, object boxes diffuse from ground-truth boxes to random distribution, and the model learns to reverse this noising process. In inference, the model refines a set of randomly generated boxes to the output results in a progressive way. Our work possesses an appealing property of flexibility, which enables the dynamic number of boxes and iterative evaluation. The extensive experiments on the standard benchmarks show that DiffusionDet achieves favorable performance compared to previous well-established detectors. For example, DiffusionDet achieves 5.3 AP and 4.8 AP gains when evaluated with more boxes and iteration steps, under a zero-shot transfer setting from COCO to CrowdHuman. Our code is available at https://github.com/ShoufaChen/DiffusionDet.
引用
收藏
页码:19773 / 19786
页数:14
相关论文
共 50 条
  • [1] DDOWOD: DiffusionDet for open-world object detection
    Fan, Jiaqi
    Zhang, Enming
    Wei, Ying
    Wang, Yuefeng
    Xia, Jiakun
    Liu, Junwei
    Liu, Xinghong
    Ma, Shuailei
    [J]. Pattern Recognition Letters, 2024, 186 : 170 - 177
  • [2] Robust and Refined Salient Object Detection Based on Diffusion Model
    Ye, Hanchen
    Zhang, Yuyue
    Zhao, Xiaoli
    [J]. ELECTRONICS, 2023, 12 (24)
  • [3] OrientedDiffDet: Diffusion Model for Oriented Object Detection in Aerial Images
    Wang, Li
    Jia, Jiale
    Dai, Hualin
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [4] Cauchy graph embedding based diffusion model for salient object detection
    Tan, Yihua
    Li, Yansheng
    Chen, Chen
    Yu, Jin-Gang
    Tian, Jinwen
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (05) : 887 - 898
  • [5] InternDiffuseDet: Object Detection Method Combining Deformable Convolution and Diffusion Model
    Yuan, Zhixiang
    Gao, Yongqi
    [J]. Computer Engineering and Applications, 2024, 60 (12) : 203 - 215
  • [6] Probabilistic Diffusion Classifiers for Object Detection
    Bauckhage, Christian
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3294 - 3297
  • [7] Super Diffusion for Salient Object Detection
    Jiang, Peng
    Pan, Zhiyi
    Tu, Changhe
    Vasconcelos, Nuno
    Chen, Baoquan
    Peng, Jingliang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2903 - 2917
  • [8] Adaptive Noise-Powered Diffusion Model for Efficient and Accurate Object Detection
    Zou, Xingyu
    Han, Kaixu
    Zhang, Xinle
    Wang, Wenhao
    Wu, Ning
    [J]. Applied Sciences (Switzerland), 2024, 14 (23):
  • [9] ObjectStitch: Object Compositing with Diffusion Model
    Song, Yizhi
    Zhang, Zhifei
    Lin, Zhe
    Cohen, Scott
    Price, Brian
    Zhang, Jianming
    Kim, Soo Ye
    Aliaga, Daniel
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 18310 - 18319
  • [10] Model Compression in Object Detection
    Salvi, Andrey de Aguiar
    Barros, Rodrigo C.
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,