Predicting Code Runtime Complexity Using ML Techniques

被引:0
|
作者
Deepa Shree, C.V. [1 ]
Kotian, Jaaswin D. [1 ]
Gupta, Nidhi [1 ]
Adyapak, Nikhil M. [1 ]
Ananthanagu, U. [1 ]
机构
[1] Department of Computer Science Engineering, PES University, Bengaluru, India
来源
关键词
D O I
February 24, 2023 - February 25, 2023
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Predicting Faults Using the Complexity of Code Changes
    Hassan, Ahmed E.
    2009 31ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PROCEEDINGS, 2009, : 78 - 88
  • [2] Predicting the complexity of code changes using entropy based measures
    K. K. Chaturvedi
    P. K. Kapur
    Sameer Anand
    V. B. Singh
    International Journal of System Assurance Engineering and Management, 2014, 5 (2) : 155 - 164
  • [3] Predicting the complexity of code changes using entropy based measures
    Chaturvedi, K. K.
    Kapur, P. K.
    Anand, Sameer
    Singh, V. B.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2014, 5 (02) : 155 - 164
  • [4] Runtime Complexity Bounds Using Squeezers
    Ish-Shalom, Oren
    Itzhaky, Shachar
    Rinetzky, Noam
    Shoham, Sharon
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2022, 44 (03):
  • [5] Classifying and Predicting Covid-19 during pregnancy using RNN and ML Techniques
    Divya, S. V.
    Venkadesh, P.
    Shiny, K. V.
    Nels, S. Ninisha
    Prasanth, A.
    2024 INTERNATIONAL CONFERENCE ON SOCIAL AND SUSTAINABLE INNOVATIONS IN TECHNOLOGY AND ENGINEERING, SASI-ITE 2024, 2024, : 54 - 59
  • [6] PREDICTING SOURCE-CODE COMPLEXITY AT THE DESIGN STAGE
    HENRY, S
    SELIG, C
    IEEE SOFTWARE, 1990, 7 (02) : 36 - 44
  • [7] Using Metrics for Code Smells of ML Pipelines
    Costal, Dolors
    Gomez, Cristina
    del Rey, Santiago
    Martinez-Fernandez, Silverio
    IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION, ICSA-C 2024, 2024, : 289 - 294
  • [9] MOORING OPTIMIZATION USING ML TECHNIQUES
    Trubat, Pau
    Herrera, Adrian
    Molins, Climent
    PROCEEDINGS OF THE ASME 2022 4TH INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, IOWTC2022, 2022,
  • [10] PRIONN: Predicting Runtime and IO using Neural Networks
    Wyatt, Michael R., II
    Herbein, Stephen
    Gamblin, Todd
    Moody, Adam
    Ahn, Dong H.
    Taufer, Michela
    PROCEEDINGS OF THE 47TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2018,