Weak abnormal acoustic signal enhancement and recognition using squeeze-and-excitation attention based denoising convolutional neural network during high-dam flood discharging
被引:0
|
作者:
Lian, Jijian
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Tianjin Univ, Sch Civil Engn, Tianjin, Peoples R China
Tianjin Univ Technol, Tianjin, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Lian, Jijian
[1
,2
,3
]
Xu, Wenliang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Tianjin Univ, Sch Civil Engn, Tianjin, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Xu, Wenliang
[1
,2
]
Liang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Tianjin Univ, Sch Civil Engn, Tianjin, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Liang, Chao
[1
,2
]
Liu, Fang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Tianjin Univ, Sch Civil Engn, Tianjin, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Liu, Fang
[1
,2
]
Wang, Runxi
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Tianjin Univ, Sch Civil Engn, Tianjin, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
Wang, Runxi
[1
,2
]
机构:
[1] Tianjin Univ, State Key Lab Hydraul Engn Intelligent Constructio, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Civil Engn, Tianjin, Peoples R China
[3] Tianjin Univ Technol, Tianjin, Peoples R China
abnormal acoustic signals;
flood discharge noise;
DnCNN algorithm;
SE attention mechanism;
enhancement and recognition;
D O I:
10.1088/1361-6501/ad41f4
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Acoustic signals (particularly cavitation acoustic signals) generated during the flood discharge of high dams are highly sensitive to various abnormal situations, whereas weak abnormal signal recognition under strong discharge-noise interference is extremely challenging. Based on the prototype and model experiments, the related abnormal acoustic signals and discharge noise were recorded to construct datasets. Subsequently, using the framework of the deep neural network (DNN) speech enhancement method, a squeeze-and-excitation attention based denoising convolutional neural network (DnCNN) based method for weak abnormal acoustic signal enhancement and recognition was proposed and verified using two case studies of cavitation acoustic signal enhancement and multicategory acoustic signal enhancement and recognition. Compared with the DnCNN method and traditional signal processing methods (such as wavelet, empirical mode decomposition, least mean square, and recursive least square), the proposed method achieved excellent signal enhancement performance after training based on limited prior knowledge of signal and noise. It also demonstrated good generalization ability and robustness in multicategory tasks, which significantly improved the abnormal signal recognition accuracy. This study provides technical support for the practical application of acoustic monitoring based on DNN for safety during the flood discharge of high dams.
机构:
Beijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R China
Lu, Zhenzhen
论文数: 引用数:
h-index:
机构:
Miao, Jingpeng
Dong, Jingran
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R China
Dong, Jingran
Zhu, Shuyuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R China
Zhu, Shuyuan
Wu, Penghan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fan Gongxiu Honors Coll, Beijing, Peoples R ChinaBeijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R China
Wu, Penghan
Wang, Xiaobing
论文数: 0引用数: 0
h-index: 0
机构:
Capital Univ Phys Educ & Sports, Sports & Med Integrat Innovat Ctr, 11 North Third Ring West Rd, Beijing 100191, Peoples R China
Capital Med Univ, China Rehabil Res Ctr, Sch Rehabil Med, Dept Ophthalmol,Beijing Boai Hosp, Beijing, Peoples R ChinaBeijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R China
Wang, Xiaobing
Feng, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Dept Biomed Engn, Beijing Int Sci & Technol Cooperat Base Intelligen, 100 Pingleyuan, Beijing 100124, Peoples R China
机构:
King Saud Univ, Coll Comp & Informat Sci CCIS, Dept Comp Engn, Riyadh 11543, Saudi ArabiaKing Saud Univ, Coll Comp & Informat Sci CCIS, Dept Comp Engn, Riyadh 11543, Saudi Arabia
Altuwaijri, Ghadir Ali
论文数: 引用数:
h-index:
机构:
Muhammad, Ghulam
论文数: 引用数:
h-index:
机构:
Altaheri, Hamdi
Alsulaiman, Mansour
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Coll Comp & Informat Sci CCIS, Dept Comp Engn, Riyadh 11543, Saudi Arabia
King Saud Univ, Ctr Smart Robot Res CS2R, Riyadh 11543, Saudi ArabiaKing Saud Univ, Coll Comp & Informat Sci CCIS, Dept Comp Engn, Riyadh 11543, Saudi Arabia