Procedure for Fabrication and Characterization of van der Waals Heterostructures

被引:0
|
作者
Shevchun, A. F. [1 ]
Prokudina, M. G. [1 ]
Egorov, S. V. [1 ]
Tikhonov, E. S. [1 ]
机构
[1] Russian Acad Sci, Osipyan Inst Solid State Phys, Chernogolovka 142432, Russia
来源
JOURNAL OF SURFACE INVESTIGATION | 2024年 / 18卷 / 03期
基金
俄罗斯科学基金会;
关键词
graphene; boron nitride; van der Waals heterostructures; monolayers; mobility; quantum Hall effect; layer-by-layer structure assembly; lithography; ohmic contacts; GRAPHENE;
D O I
10.1134/S1027451024700344
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A step-by-step description of the technique for manufacturing various van der Waals heterostructures is provided. First, the procedure to obtain monolayer and few-layer flakes from layered materials, in particular graphite and hexagonal boron nitride, is discussed. Next, different approaches to their assembly depending on the required final structure are considered. Finally, the procedure for making ohmic contacts is described in detail and the parameters for plasma chemistry and metal deposition are given. The field effect is discovered in transport measurements carried out at various temperatures, but a number of features, such as a strong shift of the charge neutral point from the zero-gate voltage, a large resistance away from the charge neutral point, and a low mobility, indicate a poor quality of the resulting devices. Nevertheless, one of the fabricated devices demonstrates good quality: the maximum mobility is estimated as 15000 cm(2)/(V s), and the magnetic field dependences demonstrate the quantum Hall effect that is standard for high-quality graphene. Unexpectedly, scanning electron microscope images of the resulting devices reveal a large amount of contamination on the surface of the flakes, which may explain the corresponding quality of our devices. Preliminary results of flakes cleaning with chemical compounds and thermal treatment are presented.
引用
收藏
页码:706 / 711
页数:6
相关论文
共 50 条
  • [1] Fabrication and applications of van der Waals heterostructures
    Junlei Qi
    Zongxiao Wu
    Wenbin Wang
    Kai Bao
    Lingzhi Wang
    Jingkun Wu
    Chengxuan Ke
    Yue Xu
    Qiyuan He
    [J]. International Journal of Extreme Manufacturing, 2023, 5 (02) : 154 - 174
  • [2] Fabrication and applications of van der Waals heterostructures
    Qi, Junlei
    Wu, Zongxiao
    Wang, Wenbin
    Bao, Kai
    Wang, Lingzhi
    Wu, Jingkun
    Ke, Chengxuan
    Xu, Yue
    He, Qiyuan
    [J]. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (02)
  • [3] Fabrication of van der Waals heterostructures through direct growth of rhenium disulfide on van der Waals surfaces
    Jeon, Jaeho
    Choi, Haeju
    Baek, Sungpyo
    Choi, Seunghyuk
    Cho, Jeong Ho
    Lee, Sungjoo
    [J]. APPLIED SURFACE SCIENCE, 2021, 544
  • [4] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [5] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [6] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    [J]. Nature, 2013, 499 : 419 - 425
  • [7] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2
  • [8] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    [J]. Nature Reviews Materials, 1
  • [9] Photovoltaics in Van der Waals Heterostructures
    Furchi, Marco M.
    Zechmeister, Armin A.
    Hoeller, Florian
    Wachter, Stefan
    Pospischil, Andreas
    Mueller, Thomas
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (01) : 106 - 116
  • [10] Polaritons in Van der Waals Heterostructures
    Guo, Xiangdong
    Lyu, Wei
    Chen, Tinghan
    Luo, Yang
    Wu, Chenchen
    Yang, Bei
    Sun, Zhipei
    de Abajo, F. Javier Garcia
    Yang, Xiaoxia
    Dai, Qing
    [J]. ADVANCED MATERIALS, 2023, 35 (17)