Accelerated motion correction with deep generative diffusion models

被引:0
|
作者
Levac, Brett [1 ]
Kumar, Sidharth [1 ]
Jalal, Ajil [2 ]
Tamir, Jonathan I. [1 ]
机构
[1] Univ Texas Austin, Chandra Family Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA USA
关键词
deep generative diffusion models; deep learning; motion correction; MRI reconstruction; MRI; RECONSTRUCTION; NETWORK; SENSE;
D O I
10.1002/mrm.30082
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeThe aim of this work is to develop a method to solve the ill-posed inverse problem of accelerated image reconstruction while correcting forward model imperfections in the context of subject motion during MRI examinations.MethodsThe proposed solution uses a Bayesian framework based on deep generative diffusion models to jointly estimate a motion-free image and rigid motion estimates from subsampled and motion-corrupt two-dimensional (2D) k-space data.ResultsWe demonstrate the ability to reconstruct motion-free images from accelerated two-dimensional (2D) Cartesian and non-Cartesian scans without any external reference signal. We show that our method improves over existing correction techniques on both simulated and prospectively accelerated data.ConclusionWe propose a flexible framework for retrospective motion correction of accelerated MRI based on deep generative diffusion models, with potential application to other forward model corruptions.
引用
收藏
页码:853 / 868
页数:16
相关论文
共 50 条
  • [1] ACCELERATED MOTION CORRECTION FOR MRI USING SCORE-BASED GENERATIVE MODELS
    Levac, Brett
    Jalal, Ajil
    Tamir, Jonathan I.
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [2] Author Correction: Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations
    Payel Das
    Tom Sercu
    Kahini Wadhawan
    Inkit Padhi
    Sebastian Gehrmann
    Flaviu Cipcigan
    Vijil Chenthamarakshan
    Hendrik Strobelt
    Cicero dos Santos
    Pin-Yu Chen
    Yi Yan Yang
    Jeremy P. K. Tan
    James Hedrick
    Jason Crain
    Aleksandra Mojsilovic
    [J]. Nature Biomedical Engineering, 2021, 5 : 942 - 942
  • [3] Turbulence scaling from deep learning diffusion generative models
    Whittaker, Tim
    Janik, Romuald A.
    Oz, Yaron
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514
  • [4] Inpainting Cropped Diffusion MRI Using Deep Generative Models
    Ayub, Rafi
    Zhao, Qingyu
    Meloy, M. J.
    Sullivan, Edith V.
    Pfefferbaum, Adolf
    Adeli, Ehsan
    Pohl, Kilian M.
    [J]. PREDICTIVE INTELLIGENCE IN MEDICINE, PRIME 2020, 2020, 12329 : 91 - 100
  • [5] Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation
    Fuhr, Addis S.
    Sumpter, Bobby G.
    [J]. FRONTIERS IN MATERIALS, 2022, 9
  • [6] Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations
    Das, Payel
    Sercu, Tom
    Wadhawan, Kahini
    Padhi, Inkit
    Gehrmann, Sebastian
    Cipcigan, Flaviu
    Chenthamarakshan, Vijil
    Strobelt, Hendrik
    dos Santos, Cicero
    Chen, Pin-Yu
    Yang, Yi Yan
    Tan, Jeremy P. K.
    Hedrick, James
    Crain, Jason
    Mojsilovic, Aleksandra
    [J]. NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 613 - +
  • [7] Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations
    Payel Das
    Tom Sercu
    Kahini Wadhawan
    Inkit Padhi
    Sebastian Gehrmann
    Flaviu Cipcigan
    Vijil Chenthamarakshan
    Hendrik Strobelt
    Cicero dos Santos
    Pin-Yu Chen
    Yi Yan Yang
    Jeremy P. K. Tan
    James Hedrick
    Jason Crain
    Aleksandra Mojsilovic
    [J]. Nature Biomedical Engineering, 2021, 5 : 613 - 623
  • [8] Generative Design of Inorganic Compounds Using Deep Diffusion Language Models
    Dong, Rongzhi
    Fu, Nihang
    Siriwardane, Edirisuriya M. D.
    Hu, Jianjun
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (29): : 5980 - 5989
  • [9] Diversity in Deep Generative Models and Generative AI
    Turinici, Gabriel
    [J]. MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 84 - 93
  • [10] Diffusion Models in Generative AI
    Sazara, Cem
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9705 - 9706