The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System

被引:33
|
作者
Bristowe, George [1 ]
Smallbone, Andrew [1 ]
机构
[1] Univ Durham, Dept Engn, Durham DH1 3LE, England
来源
HYDROGEN | 2021年 / 2卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
hydrogen; electrolysis; techno-economics; energy system; levelised cost of hydrogen; WATER ELECTROLYSIS; CYCLE;
D O I
10.3390/hydrogen2030015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water electrolysis is a process which converts electricity into hydrogen and is seen as a key technology in enabling a net-zero compatible energy system. It will enable the scale-up of renewable electricity as a primary energy source for heating, transport, and industry. However, displacing the role currently met by fossil fuels might require a price of hydrogen as low as 1 $/kg, whereas renewable hydrogen produced using electrolysis is currently 10 $/kg. This article explores how mass manufacturing of proton exchange membrane (PEM) electrolysers can reduce the capital cost and, thus, make the production of renewable power to hydrogen gas (PtG) more economically viable. A bottom up direct manufacturing model was developed to determine how economies of scale can reduce the capital cost of electrolysis. The results demonstrated that (assuming an annual production rate of 5000 units of 200 kW PEM electrolysis systems) the capital cost of a PEM electrolysis system can reduce from 1990 $/kW to 590 $/kW based on current technology and then on to 431 $/kW and 300 $/kW based on the an installed capacity scale-up of ten- and one-hundred-fold, respectively. A life-cycle costing analysis was then completed to determine the importance of the capital cost of an electrolysis system to the price of hydrogen. It was observed that, based on current technology, mass manufacturing has a large impact on the price of hydrogen, reducing it from 6.40 $/kg (at 10 units units per year) to 4.16 $/kg (at 5000 units per year). Further analysis was undertaken to determine the cost at different installed capacities and found that the cost could reduce further to 2.63 $/kg and 1.37 $/kg, based on technology scale-up by ten- and one hundred-fold, respectively. Based on the 2030 (and beyond) baseline assumptions, it is expected that hydrogen production from PEM electrolysis could be used as an industrial process feed stock, provide power and heat to buildings and as a fuel for heavy good vehicles (HGVs). In the cases of retrofitted gas networks for residential or industrial heating solutions, or for long distance transport, it represents a more economically attractive and mass-scale compatible solution when compared to electrified heating or transport solutions.
引用
收藏
页码:273 / 300
页数:28
相关论文
共 50 条
  • [1] Power-to-Gas Hydrogen: techno-economic assessment of processes towards a multi-purpose energy carrier
    Ferrero, Domenico
    Gamba, Martina
    Lanzini, Andrea
    Santarelli, Massimo
    [J]. 71ST CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION (ATI 2016), 2016, 101 : 50 - 57
  • [2] Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration
    Fambri, Gabriele
    Diaz-Londono, Cesar
    Mazza, Andrea
    Badami, Marco
    Sihvonen, Teemu
    Weiss, Robert
    [J]. APPLIED ENERGY, 2022, 312
  • [3] Techno-economic assessment of battery storage and Power-to-Gas: A whole-system approach
    Ameli, Hossein
    Qadrdan, Meysam
    Strbac, Goran
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 841 - 848
  • [4] Techno-economic implications of the electrolyser technology and size for power-to-gas systems
    Parra, David
    Patel, Martin K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (06) : 3748 - 3761
  • [5] WIND POWER PLANT AND POWER-TO-GAS SYSTEM COUPLED WITH NATURAL GAS GRID INFRASTRUCTURE: TECHNO-ECONOMIC OPTIMIZATION OF OPERATION
    Guandalini, Giulio
    Campanari, Stefano
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [6] Techno-economic assessment of a microbial power-to-gas plant - Case study in Belgium
    Van Dael, Miet
    Kreps, Sabine
    Virag, Ana
    Kessels, Kris
    Remans, Koen
    Thomas, Denis
    De Wilde, Fabian
    [J]. APPLIED ENERGY, 2018, 215 : 416 - 425
  • [7] An integrated techno-economic and life cycle environmental assessment of power-to-gas systems
    Parra, David
    Zhang, Xiaojin
    Bauer, Christian
    Patel, Martin K.
    [J]. APPLIED ENERGY, 2017, 193 : 440 - 454
  • [8] Production of Synthetic Natural Gas From Carbon Dioxide and Renewably Generated Hydrogen: A Techno-Economic Analysis of a Power-to-Gas Strategy
    Becker, William L.
    Penev, Michael
    Braun, Robert J.
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (02):
  • [9] A techno-economic study for a hydrogen storage system in a microgrid located in baja California, Mexico. Levelized cost of energy for power to gas to power scenarios
    de la Cruz-Soto, Javier
    Azkona-Bedia, Irati
    Velazquez-Limon, Nicolas
    Romero-Castanon, Tatiana
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (70) : 30050 - 30061
  • [10] The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Wurttemberg
    McKenna, R. C.
    Bchini, Q.
    Weinand, J. M.
    Michaelis, J.
    Koenig, S.
    Koppel, W.
    Fichtner, W.
    [J]. APPLIED ENERGY, 2018, 212 : 386 - 400