Fair Federated Learning for Heterogeneous Data

被引:4
|
作者
Kanaparthy, Samhita [1 ]
Padala, Manisha [1 ]
Damle, Sankarshan [1 ]
Gujar, Sujit [1 ]
机构
[1] IIIT Hyderabad, Machine Learning Lab, Hyderabad, India
关键词
Federated Learning; Fairness; Data Heterogeneity;
D O I
10.1145/3493700.3493750
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of achieving fair classification in Federated Learning (FL) under data heterogeneity. Most of the approaches proposed for fair classification require diverse data that represent the different demographic groups involved. In contrast, it is common for each client to own data that represents only a single demographic group. Hence the existing approaches cannot be adopted for fair classification models at the client level. To resolve this challenge, we propose several aggregation techniques. We empirically validate these techniques by comparing the resulting fairness and accuracy on CelebA and UTK datasets.
引用
收藏
页码:298 / 299
页数:2
相关论文
共 50 条
  • [1] Federated learning with incremental clustering for heterogeneous data
    Espinoza Castellon, Fabiola
    Mayoue, Aurelien
    Sublemontier, Jacques-Henri
    Gouy-Pailler, Cedric
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [2] Differentially Private Federated Learning on Heterogeneous Data
    Noble, Maxence
    Bellet, Aurelien
    Dieuleveut, Aymeric
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [3] Federated learning with superquantile aggregation for heterogeneous data
    Krishna Pillutla
    Yassine Laguel
    Jérôme Malick
    Zaid Harchaoui
    Machine Learning, 2024, 113 : 2955 - 3022
  • [4] Federated learning with superquantile aggregation for heterogeneous data
    Pillutla, Krishna
    Laguel, Yassine
    Malick, Jerome
    Harchaoui, Zaid
    MACHINE LEARNING, 2024, 113 (05) : 2955 - 3022
  • [5] Continual Horizontal Federated Learning for Heterogeneous Data
    Mori, Junki
    Teranishi, Isamu
    Furukawa, Ryo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [6] FedWS: Dealing with Heterogeneous Data on Federated Learning
    Vieira, Flavio
    Campos, Carlos Alberto V.
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 2010 - 2015
  • [7] Robust Federated Learning for Heterogeneous Model and Data
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (04)
  • [8] Federated Learning with Fair Averaging
    Wang, Zheng
    Fan, Xiaoliang
    Qi, Jianzhong
    Wen, Chenglu
    Wang, Cheng
    Yu, Rongshan
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1615 - 1623
  • [9] FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
    Horvath, Samuel
    Laskaridis, Stefanos
    Almeida, Mario
    Leontiadis, Ilias
    Venieris, Stylianos I.
    Lane, Nicholas D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] Towards Fair Federated Learning
    Zhou, Zirui
    Chu, Lingyang
    Liu, Changxin
    Wang, Lanjun
    Pei, Jian
    Zhang, Yong
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4100 - 4101