Development and validation of an inflammatory biomarkers model to predict gastric cancer prognosis: a multi-center cohort study in China

被引:0
|
作者
Zhang, Shaobo [1 ]
Xu, Hongxia [2 ]
Li, Wei [3 ]
Cui, Jiuwei [3 ]
Zhao, Qingchuan [4 ]
Guo, Zengqing [5 ]
Chen, Junqiang [6 ]
Yao, Qinghua [7 ,8 ]
Li, Suyi [9 ]
He, Ying [10 ]
Qiao, Qiuge [11 ]
Feng, Yongdong [12 ]
Shi, Hanping [13 ,14 ,15 ]
Song, Chunhua [1 ,16 ,17 ]
机构
[1] Zhengzhou Univ, Coll Publ Hlth, Dept Epidemiol & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Army Med Univ, Mil Med Univ 3, Daping Hosp, Dept Clin Nutr, Chongqing 400042, Peoples R China
[3] First Hosp Jilin Univ, Ctr Canc, Changchun 130021, Jilin, Peoples R China
[4] Fourth Mil Med Univ, Xijing Hosp, Dept Digest Dis, Xian 710032, Shanxi, Peoples R China
[5] Fujian Med Univ, Fujian Canc Hosp, Canc Hosp, Dept Med Oncol, Fuzhou 350014, Fujian, Peoples R China
[6] Guangxi Med Univ, Affiliated Hosp 1, Dept Gastrointestinal Surg, Nanning 530021, Guangxi, Peoples R China
[7] Zhejiang Canc Hosp, Dept Integrated Tradit Chinese Med & Western Med, Hangzhou 310022, Zhejiang, Peoples R China
[8] Zhejiang Canc Hosp, Key Lab Tradit Chinese Med Oncol, Hangzhou 310022, Zhejiang, Peoples R China
[9] Anhui Med Univ, Dept Nutr & Metab Oncol, Affiliated Prov Hosp, Hefei 230031, Anhui, Peoples R China
[10] Chongqing Gen Hosp, Dept Clin Nutr, Chongqing 400014, Peoples R China
[11] Hebei Med Univ, Hosp 2, East Hosp, Dept Gen Surg, Shijiazhuang 050000, Hebei, Peoples R China
[12] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Surg, Wuhan 430030, Peoples R China
[13] Capital Med Univ, Beijing Shijitan Hosp, Dept Gastrointestinal Surg, Beijing 100054, Peoples R China
[14] Capital Med Univ, Beijing Shijitan Hosp, Dept Clin Nutr, Beijing 100054, Peoples R China
[15] Key Lab Canc FSMP State Market Regulat, Beijing 100054, Peoples R China
[16] Zhengzhou Univ, Henan Key Lab Tumor Epidemiol, Zhengzhou 450001, Henan, Peoples R China
[17] Zhengzhou Univ, State Key Lab Esophageal Canc Prevent & Treatment, Zhengzhou 450001, Henan, Peoples R China
关键词
Machine learning; Gastric cancer; Prognosis; Inflammatory biomarkers; Overall survival; SURVIVAL;
D O I
10.1186/s12885-024-12483-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Inflammatory factors have increasingly become a more cost-effective prognostic indicator for gastric cancer (GC). The goal of this study was to develop a prognostic score system for gastric cancer patients based on inflammatory indicators.Methods Patients' baseline characteristics and anthropometric measures were used as predictors, and independently screened by multiple machine learning(ML) algorithms. We constructed risk scores to predict overall survival in the training cohort and tested risk scores in the validation. The predictors selected by the model were used in multivariate Cox regression analysis and developed a nomogram to predict the individual survival of GC patients.Results A 13-variable adaptive boost machine (ADA) model mainly comprising tumor stage and inflammation indices was selected in a wide variety of machine learning models. The ADA model performed well in predicting survival in the validation set (AUC = 0.751; 95% CI: 0.698, 0.803). Patients in the study were split into two sets - "high-risk" and "low-risk" based on 0.42, the cut-off value of the risk score. We plotted the survival curves using Kaplan-Meier analysis.Conclusion The proposed model performed well in predicting the prognosis of GC patients and could help clinicians apply management strategies for better prognostic outcomes for patients.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prognosis of patients with poorly differentiated gastric neuroendocrine neoplasms: a multi-center study in China
    Xu, Yanling
    Yan, Lijun
    Chen, Tiaotiao
    Hu, Ping
    Bai, Jianan
    Ye, Tian
    Long, Qin
    Tang, Qiyun
    FUTURE ONCOLOGY, 2022, 18 (22) : 2465 - 2473
  • [2] Validation of the Black-&-White sign to predict intracerebral hematoma expansion in the multi-center PREDICT study cohort
    Pensato, Umberto
    Tanaka, Koji
    Ospel, Johanna M.
    Aviv, Richard, I
    Rodriguez-Luna, David
    Hill, Micheal D.
    Molina, Carlos A.
    Silva Blas, Yolanda
    Boulanger, Jean-Martin
    Gord, Gubitz
    Bhatia, Rohit
    Padma, Vasantha
    Roy, Jayanta
    Dzialowski, Imanuel
    Kase, Carlos S.
    Kobayashi, Adam
    Dowlatshahi, Dar
    Demchuk, Andrew M.
    PREDICT Investigators
    INTERNATIONAL JOURNAL OF STROKE, 2025,
  • [3] Development and validation of a screening model for lung cancer using machine learning: A large-scale, multi-center study of biomarkers in breath
    Li, Jing
    Zhang, Yuwei
    Chen, Qing
    Pan, Zhenhua
    Chen, Jun
    Sun, Meixiu
    Wang, Junfeng
    Li, Yingxin
    Ye, Qing
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [4] Insulin resistance and racial disparities in breast cancer prognosis: a multi-center cohort study
    Gallagher, Emily J.
    Greco, Giampaolo
    Lin, Sylvia
    Yagnik, Radhi
    Feldman, Sheldon M.
    Port, Elisa
    Friedman, Neil B.
    Boolbol, Susan K.
    Killelea, Brigid
    Pilewskie, Melissa
    Choi, Lydia
    LeRoith, Derek
    Bickell, Nina A.
    ENDOCRINE-RELATED CANCER, 2022, 29 (12) : 693 - 701
  • [5] Updated severity and prognosis score of pulmonary alveolar proteinosis: A multi-center cohort study in China
    Bai, Jiu-Wu
    Huang, Jian-nan
    Shi, Shen-yun
    Ge, Ai
    Lu, Hai-wen
    Sun, Xiao-li
    Gu, Shu-yi
    Liang, Shuo
    Cheng, Ke-bin
    Tian, Xin-lun
    Xiao, Yong-long
    Xu, Kai-feng
    Xu, Jin-Fu
    FRONTIERS IN MEDICINE, 2023, 10
  • [6] The natural history and prognosis of primary sclerosing cholangitis: a multi-center, retrospective cohort study in China
    Shi, Mingxia
    Yang, Li
    Lin, Qiuxiang
    Liu, Xiaowei
    Zhou, Lu
    Gao, Yanhang
    He, Yonghong
    Yu, Huihong
    Zhou, Yong-Jian
    Tang, Yingmei
    Yi, Yiling
    Sun, Ying
    Lian, Min
    Ma, Xiong
    JOURNAL OF HEPATOLOGY, 2023, 78 : S406 - S406
  • [7] Identifying the impact of inflammatory breast cancer on survival: a retrospective multi-center cohort study
    J. Diessner
    R. Van Ewijk
    C. R. Weiss
    W. Janni
    M. B. Wischnewsky
    R. Kreienberg
    K. Hancke
    M. Blettner
    A. Wöckel
    L. Schwentner
    Archives of Gynecology and Obstetrics, 2015, 292 : 655 - 664
  • [8] Identifying the impact of inflammatory breast cancer on survival: a retrospective multi-center cohort study
    Diessner, J.
    Van Ewijk, R.
    Weiss, C. R.
    Janni, W.
    Wischnewsky, M. B.
    Kreienberg, R.
    Hancke, K.
    Blettner, M.
    Woeckel, A.
    Schwentner, L.
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2015, 292 (03) : 655 - 664
  • [9] Development and validation of an early warning model for hospitalized COVID-19 patients: a multi-center retrospective cohort study
    Smit, Jim M.
    Krijthe, Jesse H.
    Tintu, Andrei N.
    Endeman, Henrik
    Ludikhuize, Jeroen
    van Genderen, Michel E.
    Hassan, Shermarke
    El Moussaoui, Rachida
    Westerweel, Peter E.
    Goekoop, Robbert J.
    Waverijn, Geeke
    Verheijen, Tim
    den Hollander, Jan G.
    de Boer, Mark G. J.
    Gommers, Diederik A. M. P. J.
    van der Vlies, Robin
    Schellings, Mark
    Carels, Regina A.
    van Nieuwkoop, Cees
    Arbous, Sesmu M.
    van Bommel, Jasper
    Knevel, Rachel
    de Rijke, Yolanda B.
    Reinders, Marcel J. T.
    INTENSIVE CARE MEDICINE EXPERIMENTAL, 2022, 10 (01)
  • [10] Development and validation of an early warning model for hospitalized COVID-19 patients: a multi-center retrospective cohort study
    Jim M. Smit
    Jesse H. Krijthe
    Andrei N. Tintu
    Henrik Endeman
    Jeroen Ludikhuize
    Michel E. van Genderen
    Shermarke Hassan
    Rachida El Moussaoui
    Peter E. Westerweel
    Robbert J. Goekoop
    Geeke Waverijn
    Tim Verheijen
    Jan G. den Hollander
    Mark G. J. de Boer
    Diederik A. M. P. J. Gommers
    Robin van der Vlies
    Mark Schellings
    Regina A. Carels
    Cees van Nieuwkoop
    Sesmu M. Arbous
    Jasper van Bommel
    Rachel Knevel
    Yolanda B. de Rijke
    Marcel J. T. Reinders
    Intensive Care Medicine Experimental, 10