Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential
被引:0
|
作者:
Gou, Tianxiang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Gou, Tianxiang
[1
]
机构:
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, (-Delta)(s)u + (omega + |x|(2))u = |u|(p-2)u in R-n where n >= 1,0 < s < 1, omega >-lambda(1,s), 2 < p < 2n/(n- 2s)(+), lambda(1,s )> 0 is the lowest eigenvalue of (-Delta)(s) + |x|(2). The fractional Laplacian (-Delta)(s) is characterized as F((-Delta)(s)u)(xi) = |xi |F-2s(u)(xi) for xi is an element of R-n, where F denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671-697.] concerning the uniqueness of ground states.
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Oh Okayama, Tokyo 1528551, JapanShizuoka Univ, Fac Engn, Dept Math & Syst Engn, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328561, Japan
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan