Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential

被引:0
|
作者
Gou, Tianxiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Uniqueness; ground states; harmonic potential; fractional elliptic equations; POSITIVE RADIAL SOLUTIONS; SCALAR FIELD-EQUATIONS;
D O I
10.1017/prm.2024.44
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the uniqueness of ground states to the following fractional nonlinear elliptic equation with harmonic potential, (-Delta)(s)u + (omega + |x|(2))u = |u|(p-2)u in R-n where n >= 1,0 < s < 1, omega >-lambda(1,s), 2 < p < 2n/(n- 2s)(+), lambda(1,s )> 0 is the lowest eigenvalue of (-Delta)(s) + |x|(2). The fractional Laplacian (-Delta)(s) is characterized as F((-Delta)(s)u)(xi) = |xi |F-2s(u)(xi) for xi is an element of R-n, where F denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671-697.] concerning the uniqueness of ground states.
引用
收藏
页数:14
相关论文
共 50 条