In this paper we prove the conjecture claiming that, over a flexible field, isotropic Chow groups coincide with numerical Chow groups (with F p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb {F}}_{p}$\end{document} -coefficients). This shows that Isotropic Chow motives coincide with Numerical Chow motives. In particular, homs between such objects are finite groups and circle times has no zero-divisors. It provides a large supply of new points for the Balmer spectrum of the Voevodsky motivic category. We also prove the Morava K-theory version of the above result, which permits to construct plenty of new points for the Balmer spectrum of the Morel-Voevodsky A 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{A}}<^>{1}$\end{document} -stable homotopy category. This substantially improves our understanding of the mentioned spectra whose description is a major open problem.