Isotropic and numerical equivalence for Chow groups and Morava K-theories

被引:1
|
作者
Vishik, Alexander [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
14C15; 14C25; 19E15; 14F42; MOTIVES; OPERATIONS; IDEALS;
D O I
10.1007/s00222-024-01267-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the conjecture claiming that, over a flexible field, isotropic Chow groups coincide with numerical Chow groups (with F p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb {F}}_{p}$\end{document} -coefficients). This shows that Isotropic Chow motives coincide with Numerical Chow motives. In particular, homs between such objects are finite groups and circle times has no zero-divisors. It provides a large supply of new points for the Balmer spectrum of the Voevodsky motivic category. We also prove the Morava K-theory version of the above result, which permits to construct plenty of new points for the Balmer spectrum of the Morel-Voevodsky A 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{A}}<^>{1}$\end{document} -stable homotopy category. This substantially improves our understanding of the mentioned spectra whose description is a major open problem.
引用
收藏
页码:779 / 808
页数:30
相关论文
共 50 条