magi: A Package for Inference of Dynamic Systems from Noisy and Sparse Data via Manifold-Constrained Gaussian Processes

被引:0
|
作者
Wong, Samuel W. K. [1 ]
Yang, Shihao [2 ]
Kou, S. C. [3 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, 200 Univ Ave, Waterloo, ON N2L 3G1, Canada
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, 755 Ferst Dr NW, Atlanta, GA 30332 USA
[3] Harvard Univ, Dept Stat, 1 Oxford St,7th Floor, Cambridge, MA 02138 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 109卷 / 04期
关键词
ordinary differential equations; Bayesian inference; unobserved components; PARAMETER-ESTIMATION; MODELS;
D O I
10.18637/jss.v109.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article presents the magi software package for the inference of dynamic systems. The focus of magi is on dynamics modeled by nonlinear ordinary differential equations with unknown parameters. While such models are widely used in science and engineering, the available experimental data for parameter estimation may be noisy and sparse. Furthermore, some system components may be entirely unobserved. magi solves this inference problem with the help of manifold -constrained Gaussian processes within a Bayesian statistical framework, whereas unobserved components have posed a significant challenge for existing software. We use several realistic examples to illustrate the functionality of magi . The user may choose to use the package in any of the R , MATLAB , and Python environments.
引用
收藏
页数:47
相关论文
共 4 条