Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator

被引:0
|
作者
Lee, Jayden Dongwoo [1 ]
Im, Sukjae [1 ]
Kim, Lamsu [1 ]
Ahn, Hyungjoo [1 ]
Bang, Hyochoong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Aerosp Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Fault detection and isolation (FDI); Data-driven modeling; Koopman operator; Extended dynamic mode decomposition (EDMD); Multirotor UAV; TOLERANT CONTROL; IDENTIFICATION; DIAGNOSIS; UAVS;
D O I
10.1007/s10846-024-02142-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a data-driven fault detection and isolation (FDI) for a multirotor system using Koopman operator and Luenberger observer. Koopman operator is an infinite-dimensional linear operator that can transform nonlinear dynamical systems into linear ones. Using this transformation, our aim is to apply the linear fault detection method to the nonlinear system. Initially, a Koopman operator-based linear model is derived to represent the multirotor system, considering factors like non-diagonal inertial tensor, center of gravity variations, aerodynamic effects, and actuator dynamics. Various candidate lifting functions are evaluated for prediction performance and compared using the root mean square error to identify the most suitable one. Subsequently, a Koopman operator-based Luenberger observer is proposed using the lifted linear model to generate residuals for identifying faulty actuators. Simulation and experimental results demonstrate the effectiveness of the proposed observer in detecting actuator faults such as bias and loss of effectiveness, without the need for an explicitly defined fault dataset.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    [J]. ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [2] Data-driven sensor fault detection and isolation of nonlinear systems: Deep neural-network Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Irani, Fatemeh Negar
    Yadegar, Meysam
    Meskin, Nader
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (02): : 123 - 132
  • [3] Data-driven identification of vehicle dynamics using Koopman operator
    Cibulka, Vit
    Hanis, Tomas
    Hromcik, Martin
    [J]. PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 167 - 172
  • [4] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (02): : 137 - 150
  • [5] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [6] Data-driven approach for fault detection and isolation in nonlinear system
    Kallas, Maya
    Mourot, Gilles
    Maquin, Didier
    Ragot, Jose
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (11) : 1569 - 1590
  • [7] Optimal Control of Quadrotor Attitude System Using Data-driven Approximation of Koopman Operator
    Zheng, Ketong
    Huang, Peng
    Fettweis, Gerhard P.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 834 - 840
  • [8] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    [J]. ACTUATORS, 2022, 11 (06)
  • [9] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [10] Data-Driven Control of Soft Robots Using Koopman Operator Theory
    Bruder, Daniel
    Fu, Xun
    Gillespie, R. Brent
    Remy, C. David
    Vasudevan, Ram
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) : 948 - 961