Natural air diffusion electrode modified with metal-organic frameworks derived Fe doped porous carbon for sulfamethazine degradation by heterogeneous electro-Fenton

被引:3
|
作者
Zhang, Xuyang [1 ,2 ,3 ]
Zhang, Xiuwu [1 ,2 ,3 ]
Song, Ge [1 ,2 ,3 ]
Liang, Ruiheng [1 ,2 ,3 ]
Zhou, Minghua [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Key Lab Pollut Proc & Environm Criteria, Minist Educ, Tianjin 300350, Peoples R China
[2] Nankai Univ, Coll Environm Sci & Engn, Tianjin Key Lab Environm Technol Complex Transmedi, Tianjin 300350, Peoples R China
[3] Nankai Univ, Coll Environm Sci & Engn, Tianjin Adv Water Treatment Technol, Int Joint Res Ctr, Tianjin 300350, Peoples R China
来源
关键词
Heterogeneous electro-Fenton; Sulfamethazine degradation; Bifunctional cathode; Modified natural air diffusion electrode; Wide pH applicability; WASTE-WATER; EFFICIENT; REDUCTION; CATALYST; REMOVAL;
D O I
10.1016/j.jece.2024.112587
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel and efficient heterogeneous electro-Fenton process has been developed, utilizing a modified natural air diffusion electrode (NADE) as a bifunctional cathode. This cathode is based on Fe -doped porous carbon (Fe -PC (800)), which is derived from metal-organic frameworks (MOFs). This cathode has the unique ability to simultaneously generate and activate H 2 O 2 in-situ without the need for aeration. Fe-PC(800) synthesized at a pyrolysis temperature of 800 degrees C exhibited the optimal catalytic efficiency for sulfamethazine (SMT) degradation over a wide pH between 3 and 11, attributed to the production of Fe 0 and Fe 3 C which improved electron transfer efficiency. The presence of Fe 0 facilitated the regeneration of Fe 2+ and thus increased the activity of the bifunctional cathode in the Hetero -EF process. The co -action mechanism of center dot OH and 1 O 2 was confirmed by the radical quenching and electron paramagnetic resonance (EPR) investigations. NADE modified with Fe-PC(800) demonstrated broad applicability towards diverse contaminants and exceptional stability in ten consecutive cycling experiments. This study shed light on the viability of a straightforward and economically viable cathode utilizing NADE without the need of aeration in a Hetero -EF system, offering novel perspectives on bifunctional electrode design and the activation mechanism involving in-situ production and catalysis of H 2 O 2 .
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sulfonic acid metal-organic frameworks derived iron-doped carbon as novel heterogeneous electro-Fenton catalysts for the degradation of tetracycline: Performance and mechanism investigation
    Qin, Lei
    Sun, Qian
    Lai, Cui
    Liu, Shiyu
    Qin, Xiangbin
    Chen, Wenjing
    Fu, Yukui
    Zhou, Xuerong
    Xu, Fuhang
    Ma, Dengsheng
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [2] Electro-Fenton degradation of pesticides by metal-organic framework-derived iron nanoparticles
    Yu, Menglin
    Liu, Kai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [3] Copper embedded in nitrogen-doped carbon matrix derived from metal-organic frameworks for boosting peroxide production and electro-Fenton catalysis
    Wang, Yunting
    Xue, Yudong
    Zhang, Chunhui
    ELECTROCHIMICA ACTA, 2021, 368
  • [4] Trimetallic carbon-based catalysts derived from metal-organic frameworks for electro-Fenton removal of aqueous pesticides
    Yu, Menglin
    Dong, Heng
    Zheng, Yingdie
    Liu, Weiping
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 818
  • [5] Metal-Organic Framework Fe-BTC as Heterogeneous Catalyst for Electro-Fenton Treatment of Tetracycline
    Fisher, Taylor Mackenzie
    dos Santos, Alexsandro J.
    Garcia-Segura, Sergi
    CATALYSTS, 2024, 14 (05)
  • [6] Fe/Co bimetallic nanoparticles embedded in MOF-derived nitrogen-doped porous carbon rods as efficient heterogeneous electro-Fenton catalysts for degradation of organic pollutants
    Hu, Tong
    Deng, Fengxia
    Feng, Haopeng
    Zhang, Jingjing
    Shao, Binbin
    Feng, Chengyang
    Tang, Wangwang
    Tang, Lin
    APPLIED MATERIALS TODAY, 2021, 24
  • [7] Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an air-diffusion cathode
    El-Ghenymy, Abdellatif
    Maria Rodriguez, Rosa
    Arias, Conchita
    Centellas, Francesc
    Antonio Garrido, Jose
    Lluis Cabot, Pere
    Brillas, Enric
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 701 : 7 - 13
  • [8] Degradation of Dimethyl Phthalate by Heterogeneous Electro-Fenton Process Using Fe3O4-Doped Biomass Porous Carbon
    Hongdi Mou
    Qi Yang
    Shenbao Qu
    Xia Hu
    Ziying Li
    Yiu Fai Tsang
    Water, Air, & Soil Pollution, 2024, 235
  • [9] Degradation of Dimethyl Phthalate by Heterogeneous Electro-Fenton Process Using Fe3O4-Doped Biomass Porous Carbon
    Mou, Hongdi
    Yang, Qi
    Qu, Shenbao
    Hu, Xia
    Li, Ziying
    Tsang, Yiu Fai
    WATER AIR AND SOIL POLLUTION, 2024, 235 (01):
  • [10] Fe/Fe3C nanoparticles embedded in N-doped porous carbon as the heterogeneous electro-Fenton catalyst for efficient degradation of bisphenol A
    Zhang, Chao
    Ye, Mengxiang
    Li, Huaimeng
    Liu, Zhenzhen
    Fu, Zhen
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 316