GDAFormer: Gradient-guided Dual Attention Transformer for Low-Dose CT image denoising

被引:1
|
作者
Jiang, Guowei [1 ,2 ]
Luo, Ting [1 ,2 ]
Xu, Haiyong [2 ]
Nie, Sheng [3 ]
Song, Yang [1 ,2 ]
He, Zhouyan [1 ,2 ]
机构
[1] Ningbo Univ, Coll Sci & Technol, Ningbo 315212, Peoples R China
[2] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[3] Ningbo Univ, affiliated Hosp 1, Ningbo 315201, Peoples R China
关键词
Low-dose CT; Denoising; Gradient-guided; -guided Dual attention transformer; COMPUTED-TOMOGRAPHY; NOISE-REDUCTION; RECONSTRUCTION; NETWORK;
D O I
10.1016/j.bspc.2024.106260
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Low -Dose Computed Tomography (LDCT) image denoising is an important problem in the research field of CT, as LDCT images exhibit significant noise and artifacts compared to normal -dose CT images. To address this issue, we propose an LDCT image denoising model named Gradient -guided Dual -Attention TransFormer (GDAFormer), which adopts an encoder-decoder structure. Specifically, in the encoding part, the Gradient Denoising Module (GDM) is utilized to obtain the clean gradient map for effectively extracting edge and structure features, and they are fused with LDCT image features by Cross -Attention Transformer (CAT). The decoding part employs a Dual Self -Attention Transformer (DSAT) to capture inter -channel correlations within the fused feature maps and pixel -level correlations within individual channels, thereby improving denoising performance. Experimental results on the MayoLDCT dataset demonstrate that our proposed GDAFormer achieves competitive performance in terms of quantitative metrics and visual perceptual quality.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A multi-attention Uformer for low-dose CT image denoising
    Huimin Yan
    Chenyun Fang
    Zhiwei Qiao
    [J]. Signal, Image and Video Processing, 2024, 18 : 1429 - 1442
  • [2] A multi-attention Uformer for low-dose CT image denoising
    Yan, Huimin
    Fang, Chenyun
    Qiao, Zhiwei
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1429 - 1442
  • [3] GRADIENT-GUIDED SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE DENOISING
    Lu, Ting
    Li, Shutao
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1128 - 1131
  • [4] Transformer With Double Enhancement for Low-Dose CT Denoising
    Li, Haoran
    Yang, Xiaomin
    Yang, Sihan
    Wang, Daoyong
    Jeon, Gwanggil
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4660 - 4671
  • [5] Degradation Adaption Local-to-Global Transformer for Low-Dose CT Image Denoising
    Huan Wang
    Jianning Chi
    Chengdong Wu
    Xiaosheng Yu
    Hao Wu
    [J]. Journal of Digital Imaging, 2023, 36 : 1894 - 1909
  • [6] Degradation Adaption Local-to-Global Transformer for Low-Dose CT Image Denoising
    Wang, Huan
    Chi, Jianning
    Wu, Chengdong
    Yu, Xiaosheng
    Wu, Hao
    [J]. JOURNAL OF DIGITAL IMAGING, 2023, 36 (04) : 1894 - 1909
  • [7] Denoising swin transformer and perceptual peak signal-to-noise ratio for low-dose CT image denoising
    Zhang, Boyan
    Zhang, Yingqi
    Wang, Binjie
    He, Xin
    Zhang, Fan
    Zhang, Xinhong
    [J]. MEASUREMENT, 2024, 227
  • [8] Hformer: highly efficient vision transformer for low-dose CT denoising
    Shi-Yu Zhang
    Zhao-Xuan Wang
    Hai-Bo Yang
    Yi-Lun Chen
    Yang Li
    Quan Pan
    Hong-Kai Wang
    Cheng-Xin Zhao
    [J]. Nuclear Science and Techniques, 2023, 34 (04) : 163 - 176
  • [9] Hformer: highly efficient vision transformer for low-dose CT denoising
    Shi-Yu Zhang
    Zhao-Xuan Wang
    Hai-Bo Yang
    Yi-Lun Chen
    Yang Li
    Quan Pan
    Hong-Kai Wang
    Cheng-Xin Zhao
    [J]. Nuclear Science and Techniques, 2023, 34
  • [10] Hformer: highly efficient vision transformer for low-dose CT denoising
    Zhang, Shi-Yu
    Wang, Zhao-Xuan
    Yang, Hai-Bo
    Chen, Yi-Lun
    Li, Yang
    Pan, Quan
    Wang, Hong-Kai
    Zhao, Cheng-Xin
    [J]. NUCLEAR SCIENCE AND TECHNIQUES, 2023, 34 (04)