On functions of bounded mean oscillation with bounded negative part

被引:0
|
作者
Zhao, H. [1 ]
Wang, D. [2 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
BMO function; boundedness; commutator; characterization; maximal function; MAXIMAL FUNCTIONS; COMMUTATORS; SPACES; INEQUALITIES; EQUATIONS;
D O I
10.1007/s10476-024-00018-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} be a locally integrable function and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{M}$$\end{document} be the bilinear maximal function M(f,g)(x)=supQ is not an element of x1|Q|integral Q|f(y)g(2x-y)|dy.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{M}(f,g)(x)=\sup_{Q\ni x}\frac{1}{|Q|}\int_{Q}|f(y)g(2x-y)|dy.$$\end{document} In this paper, characterization of the BMO function in terms of commutator Mb(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{M}<^>{(1)}_{b}$$\end{document} is established. Also, we obtain the necessary and sufficient conditions for the boundedness of the commutator [b,M]1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[b, \mathfrak{M}]_{1}$$\end{document}. Moreover, some new characterizations of Lipschitz and non-negative Lipschitz functions are obtained.
引用
收藏
页码:717 / 730
页数:14
相关论文
共 50 条