Individualized prediction of non-sentinel lymph node metastasis in Chinese breast cancer patients with ≥ 3 positive sentinel lymph nodes based on machine-learning algorithms

被引:0
|
作者
Xie, Xiangli [3 ]
Fang, Yutong [1 ]
He, Lifang [1 ]
Chen, Zexiao [1 ]
Chen, Chunfa [1 ]
Zeng, Huancheng [1 ]
Chen, Bingfeng [1 ]
Huang, Guangsheng [1 ]
Guo, Cuiping [1 ]
Zhang, Qunchen [2 ]
Wu, Jundong [1 ]
机构
[1] Shantou Univ, Canc Hosp, Breast Ctr, Med Coll, Shantou 515041, Guangdong, Peoples R China
[2] Jiangmen Cent Hosp, Dept Breast, Jiangmen 529030, Guangdong, Peoples R China
[3] Jieyang Peoples Hosp, Breast Ctr, Jieyang 522000, Guangdong, Peoples R China
关键词
Breast cancer; Sentinel lymph node biopsy; Axillary lymph node dissection; Non-sentinel lymph node metastasis; Machine-learning; OPEN-LABEL; NOMOGRAM; DISSECTION; AXILLA; TRIAL; RADIOTHERAPY; INVOLVEMENT; MORBIDITY; SURGERY; BIOPSY;
D O I
10.1186/s12885-024-12870-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundAxillary lymph node dissection (ALND) is a standard procedure for early-stage breast cancer (BC) patients with three or more positive sentinel lymph nodes (SLNs). However, ALND can lead to significant postoperative complications without always providing additional clinical benefits. This study aims to develop machine-learning (ML) models to predict non-sentinel lymph node (non-SLN) metastasis in Chinese BC patients with three or more positive SLNs, potentially allowing the omission of ALND.MethodsData from 2217 BC patients who underwent SLN biopsy at Shantou University Medical College were analyzed, with 634 having positive SLNs. Patients were categorized into those with <= 2 positive SLNs and those with >= 3 positive SLNs. We applied nine ML algorithms to predict non-SLN metastasis. Model performance was evaluated using ROC curves, precision-recall curves, and calibration curves. Decision Curve Analysis (DCA) assessed the clinical utility of the models.ResultsThe RF model showed superior predictive performance, achieving an AUC of 0.987 in the training set and 0.828 in the validation set. Key predictive features included size of positive SLNs, tumor size, number of SLNs, and ER status. In external validation, the RF model achieved an AUC of 0.870, demonstrating robust predictive capabilities.ConclusionThe developed RF model accurately predicts non-SLN metastasis in BC patients with >= 3 positive SLNs, suggesting that ALND might be avoided in selected patients by applying additional axillary radiotherapy. This approach could reduce the incidence of postoperative complications and improve patient quality of life. Further validation in prospective clinical trials is warranted.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine Learning Radiomics-Based Prediction of Non-sentinel Lymph Node Metastasis in Chinese Breast Cancer Patients with 1-2 Positive Sentinel Lymph Nodes: A Multicenter Study
    Lin, Guihan
    Chen, Weiyue
    Fan, Yingying
    Zhou, Yi
    Li, Xia
    Hu, Xin
    Cheng, Xue
    Chen, Mingzhen
    Kong, Chunli
    Chen, Minjiang
    Xu, Min
    Peng, Zhiyi
    Ji, Jiansong
    [J]. ACADEMIC RADIOLOGY, 2024, 31 (08) : 3081 - 3095
  • [2] Prediction of non-sentinel lymph node involvement in breast cancer patients with a positive sentinel lymph node
    Reynders, Anneleen
    Brouckaert, Olivier
    Smeets, Ann
    Laenen, Annouschka
    Yoshihara, Emi
    Persyn, Frederik
    Floris, Giuseppe
    Leunen, Karin
    Amant, Frederic
    Soens, Julie
    Van Ongeval, Chantal
    Moerman, Philippe
    Vergote, Ignace
    Christiaens, Marie-Rose
    Staelens, Gracienne
    Van Eygen, Koen
    Vanneste, Alain
    Van Dam, Peter
    Colpaert, Cecile
    Neven, Patrick
    [J]. BREAST, 2014, 23 (04): : 453 - 459
  • [3] Risk Factors for Non-Sentinel Lymph Node Metastasis in Breast Cancer Patients with Positive Sentinel Lymph Node
    Gobbi, H.
    Bartels, H. S.
    Marinho, V. F. Z.
    Porto, A. C. S.
    Carvalho, S. M. T.
    Osorio, C. A. B. T.
    Ribeiro-Silva, A.
    Silva, G. E.
    Soares, F. A.
    [J]. LABORATORY INVESTIGATION, 2010, 90 : 47A - 47A
  • [4] Risk Factors for Non-Sentinel Lymph Node Metastasis in Breast Cancer Patients with Positive Sentinel Lymph Node
    Gobbi, H.
    Bartels, H. S.
    Marinho, V. F. Z.
    Porto, A. C. S.
    Carvalho, S. M. T.
    Osorio, C. A. B. T.
    Ribeiro-Silva, A.
    Silva, G. E.
    Soares, F. A.
    [J]. MODERN PATHOLOGY, 2010, 23 : 47A - 47A
  • [5] Molecular Subtype Classification Is a Determinant of Non-Sentinel Lymph Node Metastasis in Breast Cancer Patients with Positive Sentinel Lymph Nodes
    Zhou, Wenbin
    He, Zhongyuan
    Xue, Jialei
    Wang, Minghai
    Zha, Xiaoming
    Ling, Lijun
    Chen, Lin
    Wang, Shui
    Liu, Xiaoan
    [J]. PLOS ONE, 2012, 7 (04):
  • [6] Sentinel Lymph Node Positive Rate Predicts Non-Sentinel Lymph Node Metastasis in Breast Cancer
    Wang, Xuefei
    Zhang, Guochao
    Zuo, Zhichao
    Zhu, Qingli
    Wu, Shafei
    Zhou, Yidong
    Mao, Feng
    Lin, Yan
    Shen, Songjie
    Zhang, Xiaohui
    Qin, Xue
    Yan, Cunli
    Ma, Xiaoying
    Shi, Yue
    Sun, Qiang
    [J]. JOURNAL OF SURGICAL RESEARCH, 2022, 271 : 59 - 66
  • [7] Risk factors for non-sentinel lymph node metastases in breast cancer patients with positive sentinel lymph nodes
    Zhang Tao
    Wang Hong
    Chen Bao-ping
    Zhang Hai-song
    Wei Xi-liang
    Fu Ying
    Li Zhong
    Hu Geng-kun
    [J]. CHINESE MEDICAL JOURNAL, 2008, 121 (20) : 2107 - 2109
  • [8] Sentinel lymph node micrometastasis and predictive factors for metastasis in non-sentinel lymph nodes in breast cancer
    Troilo, V. L.
    D'Eredita, G.
    Fischetti, F.
    Indellicato, R.
    Berardi, T.
    [J]. GIORNALE DI CHIRURGIA, 2009, 30 (05): : 1 - 5
  • [9] Predictors of non-sentinel lymph node metastasis in breast cancer patients with positive sentinel lymph node (Pilot study)
    Eldweny, Hany
    Alkhaldy, Khaled
    Alsaleh, Noha
    Abdulsamad, Majda
    Abbas, Ahmed
    Hamad, Ahmad
    Mounib, Sherif
    Essam, Tarek
    Kukawski, Pawel
    Bobin, Jean-Yves
    Oteifa, Medhat
    Amanguono, Henney
    Abulhoda, Fawaz
    Usmani, Sharjeel
    Elbasmy, Amany
    [J]. JOURNAL OF THE EGYPTIAN NATIONAL CANCER INSTITUTE, 2012, 24 (01) : 23 - 30
  • [10] A new prediction nomogram of non-sentinel lymph node metastasis in cT1-2 breast cancer patients with positive sentinel lymph nodes
    Yang, Liu
    Zhao, Xueyi
    Yang, Lixian
    Chang, Yan
    Cao, Congbo
    Li, Xiaolong
    Wang, Quanle
    Song, Zhenchuan
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):