Point-Sim: A Lightweight Network for 3D Point Cloud Classification

被引:0
|
作者
Guo, Jiachen [1 ]
Luo, Wenjie [1 ]
机构
[1] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071000, Peoples R China
关键词
deep learning; point cloud; attention mechanism; pattern recognition;
D O I
10.3390/a17040158
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analyzing point clouds with neural networks is a current research hotspot. In order to analyze the 3D geometric features of point clouds, most neural networks improve the network performance by adding local geometric operators and trainable parameters. However, deep learning usually requires a large amount of computational resources for training and inference, which poses challenges to hardware devices and energy consumption. Therefore, some researches have started to try to use a nonparametric approach to extract features. Point-NN combines nonparametric modules to build a nonparametric network for 3D point cloud analysis, and the nonparametric components include operations such as trigonometric embedding, farthest point sampling (FPS), k-nearest neighbor (k-NN), and pooling. However, Point-NN has some blindness in feature embedding using the trigonometric function during feature extraction. To eliminate this blindness as much as possible, we utilize a nonparametric energy function-based attention mechanism (ResSimAM). The embedded features are enhanced by calculating the energy of the features by the energy function, and then the ResSimAM is used to enhance the weights of the embedded features by the energy to enhance the features without adding any parameters to the original network; Point-NN needs to compute the similarity between each feature at the naive feature similarity matching stage; however, the magnitude difference of the features in vector space during the feature extraction stage may affect the final matching result. We use the Squash operation to squeeze the features. This nonlinear operation can make the features squeeze to a certain range without changing the original direction in the vector space, thus eliminating the effect of feature magnitude, and we can ultimately better complete the naive feature matching in the vector space. We inserted these modules into the network and build a nonparametric network, Point-Sim, which performs well in 3D classification tasks. Based on this, we extend the lightweight neural network Point-SimP by adding some trainable parameters for the point cloud classification task, which requires only 0.8 M parameters for high performance analysis. Experimental results demonstrate the effectiveness of our proposed algorithm in the point cloud shape classification task. The corresponding results on ModelNet40 and ScanObjectNN are 83.9% and 66.3% for 0 M parameters-without any training-and 93.3% and 86.6% for 0.8 M parameters. The Point-SimP reaches a test speed of 962 samples per second on the ModelNet40 dataset. The experimental results show that our proposed method effectively improves the performance on point cloud classification networks.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Design of neural network model for lightweight 3D point cloud classification
    School of Biomedical Engineering, Xinxiang Medical University, China
    不详
    不详
    不详
    CA, United States
    J. Network Intell., 2020, 3 (122-128): : 122 - 128
  • [2] LPCCNet: A Lightweight Network for Point Cloud Classification
    Li, Minle
    Hu, Yihua
    Zhao, Nanxiang
    Guo, Liren
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 962 - 966
  • [3] RFNet: Convolutional Neural Network for 3D Point Cloud Classification
    Shan X.-Y.
    Sun Z.-L.
    Zeng Z.-G.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (11): : 2350 - 2359
  • [4] Geometry Sharing Network for 3D Point Cloud Classification and Segmentation
    Xu, Mingye
    Zhou, Zhipeng
    Qiao, Yu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12500 - 12507
  • [5] Equivariant Point Network for 3D Point Cloud Analysis
    Chen, Haiwei
    Liu, Shichen
    Chen, Weikai
    Li, Hao
    Hill, Randall
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14509 - 14518
  • [6] Lightweight deep neural network for point cloud classification
    Yan L.
    Liu K.
    Duan M.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2020, 47 (02): : 46 - 53
  • [7] Snowpoints: Lightweight neural network for point cloud classification?
    Xin, Zihao
    Wang, Hongyuan
    Zhang, Ji
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [8] A Lightweight Model for 3D Point Cloud Object Detection
    Li, Ziyi
    Li, Yang
    Wang, Yanping
    Xie, Guangda
    Qu, Hongquan
    Lyu, Zhuoyang
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [9] GLSNet: Global and Local Streams Network for 3D Point Cloud Classification
    Bao, Rina
    Palaniappan, Kannappan
    Zhao, Yunxin
    Seetharaman, Guna
    Zeng, Wenjun
    2019 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2019,
  • [10] Deep 3D point cloud classification and segmentation network based on GateNet
    Hui Liu
    Shuaihua Tian
    The Visual Computer, 2024, 40 (2) : 971 - 981