N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetry in the twistor description of higher-spin holography

被引:0
|
作者
Julian Lang [1 ]
Yasha Neiman [1 ]
机构
[1] Okinawa Institute of Science and Technology,
关键词
Extended Supersymmetry; Higher Spin Gravity; Higher Spin Symmetry; AdS-CFT Correspondence;
D O I
10.1007/JHEP05(2024)341
中图分类号
学科分类号
摘要
We study the holographic duality between higher-spin (HS) gravity in 4d and free vector models in 3d, with special attention to the role of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetry (SUSY). For the type-A bosonic bulk theory, dual to spin-0 fields on the boundary, there exists a twistor-space description; this maps both single-trace boundary operators and linearized bulk fields to spacetime-independent twistor functions, whose HS-algebra products compute all boundary correlators. Here, we extend this description to the type-B bosonic theory (dual to spin-1/2 fields on the boundary), and to the supersymmetric theory containing both. A key role is played by boundary bilocals, which in type-A are dual to the Didenko-Vasiliev 1/2-BPS “black hole”. We extend this to an infinite family of linearized 1/2-BPS “black hole” solutions. Remarkably, the full supersymmetric theory (along with the SUSY generators) fits in the same space of twistor functions as the type-A theory. Instead of two sets of bosonic bulk fields, the formalism sees one set of linearized fields, but with both types of boundary data allowed.
引用
收藏
相关论文
共 50 条