On the orders of composition factors in completely reducible groups

被引:0
|
作者
Maroti, Attila [1 ]
V. Skresanov, Saveliy [1 ,2 ]
机构
[1] HUN REN Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[2] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk 630090, Russia
基金
欧洲研究理事会;
关键词
Simple group of Lie type; Composition factor; Completely reducible; Orbital graph; PRIMITIVE PERMUTATION-GROUPS; NUMBER;
D O I
10.1016/j.jalgebra.2024.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an asymptotic upper bound for the product of the p-parts of the orders of certain composition factors of a finite group acting completely reducibly and faithfully on a finite vector space of order divisible by a prime p. This enables us to give a new bound for the diameter of a nondiagonal orbital graph of an affine primitive permutation group. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:183 / 196
页数:14
相关论文
共 50 条
  • [1] The number of composition factors of order p in completely reducible groups of characteristic p
    Giudici, Michael
    Glasby, S. P.
    Li, Cai Heng
    Verret, Gabriel
    [J]. JOURNAL OF ALGEBRA, 2017, 490 : 241 - 255
  • [2] Bounding the composition length of primitive permutation groups and completely reducible linear groups
    Glasby, S. P.
    Praeger, Cheryl E.
    Rosa, Kyle
    Verret, Gabriel
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 (03): : 557 - 572
  • [3] MODULE VALUATIONS AND REPRESENTATIONS OF COMPLETELY REDUCIBLE ORDERS
    RUMP, W
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1142 : 233 - 238
  • [4] Minimal coverings of completely reducible groups
    Abdollahi, A.
    Amiri, S. M. Jafarian
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 72 (1-2): : 167 - 172
  • [5] GROUPS WITH COMPLETELY REDUCIBLE REGULAR REPRESENTATION
    BAGGETT, L
    TAYLOR, K
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (03) : 593 - 600
  • [6] ENLACEMENTS AND REPRESENTATION-THEORY OF COMPLETELY REDUCIBLE ORDERS
    RUMP, W
    [J]. LECTURE NOTES IN MATHEMATICS, 1986, 1178 : 272 - 308
  • [7] GENERATING FINITE COMPLETELY REDUCIBLE LINEAR-GROUPS
    KOVACS, LG
    ROBINSON, GR
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (02) : 357 - 364
  • [8] Computing Galois groups of completely reducible differential equations
    Compoint, E
    Singer, MF
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (4-5) : 473 - 494
  • [9] Coprime subdegrees for primitive permutation groups and completely reducible linear groups
    Dolfi, Silvio
    Guralnick, Robert
    Praeger, Cheryl E.
    Spiga, Pablo
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (02) : 745 - 772
  • [10] Coprime subdegrees for primitive permutation groups and completely reducible linear groups
    Silvio Dolfi
    Robert Guralnick
    Cheryl E. Praeger
    Pablo Spiga
    [J]. Israel Journal of Mathematics, 2013, 195 : 745 - 772