The ubiquitous electromagnetic interference and pollution have become a deteriorating issue with the rapid advancement of wireless communication technologies and devices. Developing enhanced microwave absorber is a feasible and persistent research hotspot to counter serious electromagnetic radiation problems. To this end, state-of-the-art low-dimensional materials, including zero-dimensional, one-dimensional, two-dimensional, and mixed-dimensional nanoarchitectures have sprung up on account of their built-in merits including the modulable crystal and electronic structures, exquisite nanoarchitectures, and quantum and dielectric confinement effects. However, the pristine low-dimensional materials perform inferior status in microwave attenuation due to the monotonous dielectric or magnetic responses, the incoordination between wavelength and nanoscale, and semiempirical electromagnetic attenuation mechanism. Therefore, the elaborate engineering strategies in lowdimensional materials, such as architecture modification, interface engineering, defect engineering, entropy manipulation, and dielectric-magnetic synergy are motivated to contend for enhanced microwave absorption performance. This review provides the cutting-edge progresses of engineering strategies for low-dimensional microwave absorbers. Firstly, the underlying microwave attenuation mechanisms of low-dimensional microwave absorbers are introduced thoroughly. Then, the leading-edge engineering strategies and low-dimensional microwave absorbers inspired by the basic principle of microwave attenuation are summarized and outlined. In the end, the challenges, and outlooks for engineering strategies in low-dimensional microwave absorbers are combed to pinpoint the long-term development orientation.