Liouville irregular states of half-integer ranks

被引:0
|
作者
Hamachika, Ryo [1 ]
Nakanishi, Tomoki [1 ]
Nishinaka, Takahiro [1 ,2 ,3 ]
Tanigawa, Shou [1 ]
机构
[1] Osaka Metropolitan Univ, Grad Sch Sci, Dept Phys, Osaka 5588585, Japan
[2] Osaka Metropolitan Univ, Nambu Yoichiro Inst Theoret & Expt Phys NITEP, Osaka 5588585, Japan
[3] Osaka Metropolitan Univ, Osaka Cent Adv Math Inst OCAMI, Osaka 5588585, Japan
来源
关键词
Supersymmetry and Duality; Conformal Field Models in String Theory; Extended Supersymmetry; SUPERCONFORMAL FIELD-THEORIES;
D O I
10.1007/JHEP06(2024)112
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We conjecture a set of differential equations that characterizes the Liouville irregular states of half-integer ranks, which extends the generalized AGT correspondence to all the (A 1 , A even) and (A 1 , D odd) types Argyres-Douglas theories. For lower half-integer ranks, our conjecture is verified by deriving it as a suitable limit of a similar set of differential equations for integer ranks. This limit is interpreted as the 2D counterpart of a 4D RG-flow from (A 1 , D 2n ) to (A 1 , D 2n-1). For rank 3/2, we solve the conjectured differential equations and find a power series expression for the irregular state |I (3/2)>. For rank 5/2, our conjecture is consistent with the differential equations recently discovered by H. Poghosyan and R. Poghossian.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] HALF-INTEGER GHOST STATES AND SIMPLE BRST QUANTIZATION
    MARNELIUS, R
    [J]. NUCLEAR PHYSICS B, 1987, 294 (03) : 671 - 684
  • [2] Dynamics of States with Half-Integer Orbital Momentum in Their Own Field
    Chikhachev, A. S.
    [J]. PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2023, 20 (05) : 976 - 980
  • [3] Half-integer filling-factor states in quantum dots
    Harju, A
    Saarikoski, H
    Räsänen, E
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (12)
  • [4] Dynamics of States with Half-Integer Orbital Momentum in Their Own Field
    A. S. Chikhachev
    [J]. Physics of Particles and Nuclei Letters, 2023, 20 : 976 - 980
  • [5] Integer versus half-integer angular momentum
    Gatland, IR
    [J]. AMERICAN JOURNAL OF PHYSICS, 2006, 74 (03) : 191 - 192
  • [6] Pfaffian paired states for half-integer fractional quantum Hall effect
    Milovanovic, M., V
    Djurdjevic, S.
    Vucicevic, J.
    Antonic, L.
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (21):
  • [7] Chebyshev functions of half-integer order
    Ravelo, J. Garcia
    Cuevas, R.
    Queijeiro, A.
    Pena, J. J.
    Morales, J.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (10) : 743 - 749
  • [8] Integer and half-integer quantization conditions in quantum mechanics
    Duan, YS
    Jia, DJ
    [J]. CHINESE PHYSICS LETTERS, 2001, 18 (04) : 473 - 475
  • [9] Wavefunctions for particles of half-integer spins
    Zhu, JJ
    Ruan, TN
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (03) : 435 - 442
  • [10] ON THE QUANTIZATION OF HALF-INTEGER SPIN FIELDS
    VOLKOV, DV
    [J]. SOVIET PHYSICS JETP-USSR, 1959, 9 (05): : 1107 - 1111