A novel global grid model for soil moisture retrieval considering geographical disparity in spaceborne GNSS-R

被引:4
|
作者
Huang, Liangke [1 ]
Pan, Anrong [1 ]
Chen, Fade [1 ]
Guo, Fei [2 ]
Li, Haojun [3 ]
Liu, Lilong [1 ]
机构
[1] Guilin Univ Technol, Coll Geomat & Geoinformat, Guilin 541004, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[3] Tongji Univ, Coll Surveying & Geo Informat, Shanghai 200092, Peoples R China
来源
SATELLITE NAVIGATION | 2024年 / 5卷 / 01期
关键词
Soil moisture (SM); Global navigation satellite system-reflectometry (GNSS-R); Cyclone GNSS (CYGNSS); Geographical disparity; L-BAND; MULTIPATH; REFLECTOMETRY; REFLECTIVITY; TEMPERATURE; PERFORMANCE; SIGNALS; OCEAN;
D O I
10.1186/s43020-024-00150-9
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Spaceborne global navigation satellite system-reflectometry has become an effective technique for Soil Moisture (SM) retrieval. However, the accuracy of global SM retrieval using a single model is limited due to the complexity of land surface. Introducing redundant ancillary data may also result in over-reliance problems. Therefore, we propose a method for SM retrieval that considers geographical disparities using the data from Cyclone GNSS (CYGNSS) observations and Soil Moisture Active and Passive (SMAP) product. Based on the CYGNSS effective reflectivity and ancillary datasets of SMAP, we establish five models for each grid with different parameters to achieve global SM retrieval. Subsequently, an optimal model, determined by the performance indicator, is used for SM retrieval. The results show that the root mean square error SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} with the improved method is decreased by 9.1% using SMAP SM as reference with the SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} = 0.040 cm3/cm3 compared with using single reflectivity-temperature-vegetation method. Additionally, using the in-situ SM of International Soil Moisture Network as reference, the overall correlation coefficient R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} and SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} values with the improved method are 0.80 and 0.064 cm3/cm3, respectively. The average R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} of the chosen sites is increased by 22.7%, and the average SRMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{RMSE}}$$\end{document} is decreased by 8.7%. The results indicate that the improved method can better retrieve SM in both global and local scales without redundant auxiliary data.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An improved soil moisture retrieval method considering azimuth angle changes for spaceborne GNSS-R
    Ye, Yiling
    Liu, Lilong
    Chen, Fade
    Huang, Liangke
    ADVANCES IN SPACE RESEARCH, 2025, 75 (01) : 178 - 189
  • [2] Soil Moisture Retrieval in Southeast China from Spaceborne GNSS-R Measurements
    Dong, Zhounan
    Jin, Shuanggen
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 1961 - 1965
  • [3] Spaceborne GNSS-R Soil Moisture Retrieval: Status, Development Opportunities, and Challenges
    Wu, Xuerui
    Ma, Wenxiao
    Xia, Junming
    Bai, Weihua
    Jin, Shuanggen
    Calabia, Andres
    REMOTE SENSING, 2021, 13 (01) : 1 - 24
  • [4] SENSITIVITY TO SOIL MOISTURE OF SPACEBORNE GNSS-R OBSERVABLES
    Camps, Adriano
    Vall-Llossera, Mercedes
    Park, Hyuk
    Portal, Gerard
    Rossato, Luciana
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3161 - 3164
  • [5] An Improved Method for Water Body Removal in Spaceborne GNSS-R Soil Moisture Retrieval
    Yang, Wentao
    Guo, Fei
    Zhang, Xiaohong
    Zhu, Yifan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL
    Setti, Paulo T., Jr.
    Tabibi, Sajad
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 510 - 513
  • [7] Spaceborne GNSS-R for retrieving soil moisture based on the correction of stage model
    Tao T.
    Li J.
    Zhu Y.
    Wang J.
    Chen H.
    Shi M.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1942 - 1950
  • [8] Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation
    Camps, Adriano
    Park, Hyuk
    Pablos, Miriam
    Foti, Giuseppe
    Gommenginger, Christine P.
    Liu, Pang-Wei
    Judge, Jasmeet
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (10) : 4730 - 4742
  • [9] Soil moisture retrieval from GNSS-R signals
    Jia, Yan
    Pei, Yuekun
    Savi, Patrizia
    Notarpietro, Riccardo
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1481 - 1484
  • [10] The Sensitivity Analysis on GNSS-R Soil Moisture Retrieval
    Jia, Yan
    Jin, Shuanggen
    Yan, Qingyun
    Savi, Patrizia
    2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021), 2021, : 2307 - 2311