Bayesian Robust Tensor Ring Decomposition for Incomplete Multiway Data

被引:0
|
作者
Huang, Zhenhao [1 ,2 ]
Qiu, Yuning [1 ,3 ]
Chen, Xinqi [1 ,4 ]
Sun, Weijun [5 ,6 ]
Zhou, Guoxu [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Key Lab Intelligent Detect & Internet Things Mfg, Minist Educ, Guangzhou 510006, Peoples R China
[3] RIKEN Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[4] Guangdong Univ Technol, Key Lab Intelligent Informat Proc & Syst Integrat, Minist Educ, Guangzhou 510006, Peoples R China
[5] Guangdong Univ Technol, Ctr Intelligent Batch Mfg Based IoT Technol 111, Guangzhou 510006, Peoples R China
[6] Guangdong Univ Technol, Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic tensor ring (TR) rank determination; probability distribution; robust tensor completion (RTC); TR; variational Bayesian (VB) algorithm; TRAIN RANK; COMPLETION; IMAGE; ALGORITHMS;
D O I
10.1109/TSMC.2024.3375456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust tensor completion (RTC) aims to recover a low-rank tensor from its incomplete observations with outlier corruption. The recently proposed tensor ring (TR) model has demonstrated superiority in solving the RTC problem. However, the methods using the TR model either require a preassigned TR rank or aggressively pursue the minimum TR rank, where the latter often leads to biased solutions in the presence of noise. To tackle these bottlenecks, a Bayesian robust TR decomposition (BRTR) method is proposed to give a more accurate solution for the RTC problem, which can avoid exquisite selection of the TR rank and penalty parameters. A variational Bayesian (VB) algorithm is developed to infer the probability distribution of posteriors. During the learning process, BRTR can prune off zero components of core tensors, resulting in automatic TR rank determination. Extensive experiments show that BRTR can achieve significantly improved performance than other state-of-the-art methods.
引用
收藏
页码:4005 / 4018
页数:14
相关论文
共 50 条
  • [1] Bayesian Robust Tensor Factorization for Incomplete Multiway Data
    Zhao, Qibin
    Zhou, Guoxu
    Zhang, Liqing
    Cichocki, Andrzej
    Amari, Shun-Ichi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (04) : 736 - 748
  • [2] Scalable Bayesian Tensor Ring Factorization for Multiway Data Analysis
    Tao, Zerui
    Tanaka, Toshihisa
    Zhao, Qibin
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT I, 2024, 14447 : 490 - 503
  • [3] NeuralCP: Bayesian Multiway Data Analysis with Neural Tensor Decomposition
    Liu, Bin
    He, Lirong
    Li, Yingming
    Zhe, Shandian
    Xu, Zenglin
    COGNITIVE COMPUTATION, 2018, 10 (06) : 1051 - 1061
  • [4] NeuralCP: Bayesian Multiway Data Analysis with Neural Tensor Decomposition
    Bin Liu
    Lirong He
    Yingming Li
    Shandian Zhe
    Zenglin Xu
    Cognitive Computation, 2018, 10 : 1051 - 1061
  • [5] Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors
    Rai, Piyush
    Wang, Yingjian
    Guot, Shengbo
    Chen, Gary
    Dunson, David
    Carin, Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1800 - 1808
  • [6] Scalable and Robust Tensor Ring Decomposition for Large-scale Data
    He, Yicong
    Atia, George K.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 860 - 869
  • [7] Robust Bayesian Classification with Incomplete Data
    Xunan Zhang
    Shiji Song
    Cheng Wu
    Cognitive Computation, 2013, 5 : 170 - 187
  • [8] Bayesian Robust PCA for Incomplete Data
    Luttinen, Jaakko
    Ilin, Alexander
    Karhunen, Julia
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 66 - 73
  • [9] Bayesian Robust PCA of Incomplete Data
    Luttinen, Jaakko
    Ilin, Alexander
    Karhunen, Juha
    NEURAL PROCESSING LETTERS, 2012, 36 (02) : 189 - 202
  • [10] Bayesian Robust PCA of Incomplete Data
    Jaakko Luttinen
    Alexander Ilin
    Juha Karhunen
    Neural Processing Letters, 2012, 36 : 189 - 202