An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels

被引:0
|
作者
Chen, Yanping [1 ]
Chen, Zhenrong [2 ]
Huang, Yunqing [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional integro-differential equation; Weakly singular kernel; hp-version discontinuous Galerkin method; Volterra integral equation; Exponential rate of convergence; VOLTERRA INTEGRAL-EQUATIONS; SPECTRAL-COLLOCATION METHODS; TIME-STEPPING METHOD; NUMERICAL-SOLUTION; DIFFUSION; CONVERGENCE; ALGORITHM; SMOOTH;
D O I
10.1007/s10543-024-01026-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper suggests an hp-discontinuous Galerkin approach for the fractional integro-differential equations with weakly singular kernels. The key idea behind our method is to first convert the fractional integro-differential equations into the second kind of Volterra integral equations, and then solve the equivalent integral equations using the hp-discontinuous Galerkin method. We establish prior error bounds in the L-2-norm that is entirely explicit about the local mesh sizes, local polynomial degrees, and local regularities of the exact solutions. The use of geometrically refined meshes and linearly increasing approximation orders demonstrates, in particular, that exponential convergence is achievable for solutions with endpoint singularities. Numerical results indicate the usefulness of the proposed method.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] An hp-version fractional collocation method for Volterra integro-differential equations with weakly singular kernels
    Zheng Ma
    Chengming Huang
    [J]. Numerical Algorithms, 2023, 92 : 2377 - 2404
  • [2] An hp-version fractional collocation method for Volterra integro-differential equations with weakly singular kernels
    Ma, Zheng
    Huang, Chengming
    [J]. NUMERICAL ALGORITHMS, 2023, 92 (04) : 2377 - 2404
  • [3] An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels
    Wang, Chuanli
    Chen, Biyun
    [J]. AIMS MATHEMATICS, 2022, 8 (08): : 19816 - 19841
  • [4] AN hp-VERSION DISCONTINUOUS GALERKIN METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
    Mustapha, K.
    Brunner, H.
    Mustapha, H.
    Schoetzau, D.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1369 - 1396
  • [5] An hp-Version Chebyshev Spectral Collocation Method for Nonlinear Volterra Integro-Differential Equations with Weakly Singular Kernels
    Jia, Hongli
    Yang, Yang
    Wang, Zhongqing
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) : 969 - 994
  • [6] An hp-version Spectral Collocation Method for Nonlinear Volterra Integro-differential Equation with Weakly Singular Kernels
    Chuan-Li Wang
    Zhong-Qing Wang
    Hong-Li Jia
    [J]. Journal of Scientific Computing, 2017, 72 : 647 - 678
  • [7] An hp-version Spectral Collocation Method for Nonlinear Volterra Integro-differential Equation with Weakly Singular Kernels
    Wang, Chuan-Li
    Wang, Zhong-Qing
    Jia, Hong-Li
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (02) : 647 - 678
  • [8] An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels
    Wang, Lina
    Tian, Hongjiong
    Yi, Lijun
    [J]. Applied Numerical Mathematics, 2021, 161 : 218 - 232
  • [9] AN hp-VERSION LEGENDRE-JACOBI SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH SMOOTH AND WEAKLY SINGULAR KERNELS
    Wang, Zhong-Qing
    Guo, Yu-Ling
    Yi, Li-Jun
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2285 - 2324
  • [10] An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels
    Wang, Lina
    Tian, Hongjiong
    Yi, Lijun
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 218 - 232