FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning

被引:0
|
作者
Steenwinckel, Bram [1 ]
De Paepe, Dieter [1 ]
Vanden Hautte, Sander [1 ]
Heyvaert, Pieter [1 ]
Bentefrit, Mohamed [2 ]
Moens, Pieter [1 ]
Dimou, Anastasia [1 ]
Van Den Bossche, Bruno [2 ]
De Turck, Filip [1 ]
Van Hoecke, Sofie [1 ]
Ongenae, Femke [1 ]
机构
[1] Steenwinckel, Bram
[2] De Paepe, Dieter
[3] Vanden Hautte, Sander
[4] Heyvaert, Pieter
[5] Bentefrit, Mohamed
[6] Moens, Pieter
[7] Dimou, Anastasia
[8] Van Den Bossche, Bruno
[9] De Turck, Filip
[10] Van Hoecke, Sofie
[11] Ongenae, Femke
来源
Steenwinckel, Bram (bram.steenwinckel@ugent.be) | 1600年 / Elsevier B.V., Netherlands卷 / 116期
关键词
Fault detection - Semantic Web - Mining - Anomaly detection - Machine learning - Feedback;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:30 / 48
相关论文
共 30 条
  • [1] FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning
    Steenwinckel, Bram
    De Paepe, Dieter
    Hautte, Sander Vanden
    Heyvaert, Pieter
    Bentefrit, Mohamed
    Moens, Pieter
    Dimou, Anastasia
    Van Den Bossche, Bruno
    De Turck, Filip
    Van Hoecke, Sofie
    Ongenae, Femke
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 116 : 30 - 48
  • [2] Adaptive Anomaly Detection and Root Cause Analysis by Fusing Semantics and Machine Learning
    Steenwinckel, Bram
    [J]. SEMANTIC WEB: ESWC 2018 SATELLITE EVENTS, 2018, 11155 : 272 - 282
  • [3] Assembly Line Anomaly Detection and Root Cause Analysis Using Machine Learning
    Abdelrahman, Osama
    Keikhosrokiani, Pantea
    [J]. IEEE ACCESS, 2020, 8 : 189661 - 189672
  • [4] A Tool to Combine Expert Knowledge and Machine Learning for Defect Detection and Root Cause Analysis in a Hot Strip Mill
    Latham S.
    Giannetti C.
    [J]. SN Computer Science, 4 (5)
  • [5] Anomaly Detection and Root Cause Analysis on Log Data
    Pasha, Daem
    Shah, Ali Hussain
    Zadeh, Esmaeil Habib
    Konur, Savas
    [J]. ARTIFICIAL INTELLIGENCE XXXIX, AI 2022, 2022, 13652 : 333 - 339
  • [6] Methodology for Machine Learning Anomaly Detection in Phasor Measurement Unit Data
    Baxter, Jacob
    St Leger, Aaron
    [J]. 2022 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC 2022), 2022,
  • [7] Explainable Machine Learning in Industry 4.0: Evaluating Feature Importance in Anomaly Detection to Enable Root Cause Analysis
    Carletti, Mattia
    Masiero, Chiara
    Beghi, Alessandro
    Susto, Gian Antonio
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 21 - 26
  • [8] Combining expert knowledge and unsupervised learning techniques for anomaly detection in aircraft flight data
    Mack, Daniel L. C.
    Biswas, Gautam
    Khorasgani, Hamed
    Mylaraswamy, Dinkar
    Bharadwaj, Raj
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (04) : 291 - 307
  • [9] Hybrid Machine Learning Model for Anomaly Detection in Unlabelled Data of Wireless Sensor Networks
    Srivastava, Anushka
    Bharti, Manoranjan Rai
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2023, 129 (04) : 2693 - 2710
  • [10] Hybrid Machine Learning Model for Anomaly Detection in Unlabelled Data of Wireless Sensor Networks
    Anushka Srivastava
    Manoranjan Rai Bharti
    [J]. Wireless Personal Communications, 2023, 129 : 2693 - 2710