共 30 条
- [1] BAO F, YIN K X., Review and progress of feature selection algorithms, Science and Technology Wind, 6, (2020)
- [2] NIE F P, XIANG S M, JIA Y Q, Et al., Trace ratio criterion for feature selection, Proc.of the 23rd AAAI Conference on Artificial Intelligence, pp. 671-676, (2008)
- [3] YANG Y, SHEN H T, MA Z, Et al., L21-norm regularized discriminative feature selection for unsupervised learning, Proc.of the 22nd International Joint Conference on Artificial Intelligence, pp. 1589-1594, (2011)
- [4] CAI D, HE X, HAN J W., Spectral regression: a unified approach for sparse subspace learning, Proc.of the IEEE 7th International Conference on Data Mining, pp. 73-82, (2007)
- [5] CAI D, ZHANG C Y, HE X F., Unsupervised feature selection for multi-cluster data, Proc.of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2010)
- [6] ZHAO Z, WANG L, LIU H., Efficient spectral feature selection with minimum redundancy, Proc.of the 24th AAAI Conference on Artificial Intelligence, pp. 673-678, (2010)
- [7] LIU X W, WANG L, ZHANG J., Global and local structure preservation for feature selection, IEEE Trans.on Neural Networks & Learning Systems, 25, 6, pp. 1083-1095, (2014)
- [8] HOU C P, NIE F P, LI X L, Et al., Joint embedding learning and sparse regression: a framework for unsupervised feature selection, IEEE Trans.on Cybern, 44, 6, pp. 793-804, (2013)
- [9] QIAN M J, ZHAI C X., Robust unsupervised feature selection, Proc.of the 23rd International Joint Conference on Artificial Intelligence, (2013)
- [10] LI Z C, YANG Y, LIU J, Et al., Unsupervised feature selection using nonnegative spectral analysis, Proc.of the 26th AAAI Conference on Artificial Intelligence, pp. 1026-1032, (2012)