Convex Bodies of Constant Width with Exponential Illumination Number

被引:0
|
作者
Arman, Andrii [1 ]
Bondarenko, Andrii [2 ]
Prymak, Andriy [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Convex bodies of constant width; Illumination number; Sphere covering;
D O I
10.1007/s00454-024-00647-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that there exist convex bodies of constant width in En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}<^>n$$\end{document} with illumination number at least (cos(pi/14)+o(1))-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cos (\pi /14)+o(1))<^>{-n}$$\end{document}, answering a question by Kalai. Furthermore, we prove the existence of finite sets of diameter 1 in En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}<^>n$$\end{document} which cannot be covered by (2/3-o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2/\sqrt{3}-o(1))<^>{n}$$\end{document} balls of diameter 1, improving a result of Bourgain and Lindenstrauss.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On the X-ray Number of Almost Smooth Convex Bodies and of Convex Bodies of Constant Width
    Bezdek, K.
    Kiss, Gy.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (03): : 342 - 348
  • [2] On convex bodies of constant width
    Bazylevych, L. E.
    Zarichnyi, M. M.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (11) : 1699 - 1704
  • [3] Convex bodies of constant width
    Polovinkin, ES
    [J]. DOKLADY MATHEMATICS, 2004, 70 (01) : 560 - 562
  • [4] Convex bodies of constant width and constant brightness
    Howard, R
    [J]. ADVANCES IN MATHEMATICS, 2006, 204 (01) : 241 - 261
  • [5] Asymmetry of Convex Bodies of Constant Width
    HaiLin Jin
    Qi Guo
    [J]. Discrete & Computational Geometry, 2012, 47 : 415 - 423
  • [6] Asymmetry of Convex Bodies of Constant Width
    Jin, HaiLin
    Guo, Qi
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (02) : 415 - 423
  • [7] Hyperspaces of convex bodies of constant width
    Antonyan, Sergey A.
    Jonard-Perez, Natalia
    Juarez-Ordonez, Saul
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 347 - 361
  • [8] Constant diameter and constant width of spherical convex bodies
    Han, Huhe
    Wu, Denghui
    [J]. AEQUATIONES MATHEMATICAE, 2021, 95 (01) : 167 - 174
  • [9] Constant diameter and constant width of spherical convex bodies
    Huhe Han
    Denghui Wu
    [J]. Aequationes mathematicae, 2021, 95 : 167 - 174
  • [10] Width of convex bodies in spaces of constant curvature
    E. Gallego
    A. Reventós
    G. Solanes
    E. Teufel
    [J]. manuscripta mathematica, 2008, 126 : 115 - 134