Abstractive Summarizers are Excellent Extractive Summarizers

被引:0
|
作者
Varab, Daniel [1 ]
Xu, Yumo [2 ]
机构
[1] IT Univ Copenhagen, Novo Nordisk, Copenhagen, Denmark
[2] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we explore the efficacy of modeling extractive summarization with an abstractive summarization system. We propose three novel inference algorithms for sequence-to-sequence models, evaluate them on established summarization benchmarks, and show that recent advancements in abstractive designs have enabled them to compete directly with extractive systems with custom extractive architectures. We show for the first time that a single model can simultaneously produce both state-of-the-art abstractive and extractive summaries, introducing a unified paradigm for summarization systems. Our results question fundamental concepts of extractive systems and pave the way for a new paradigm - generative modeling for extractive summarization.
引用
收藏
页码:330 / 339
页数:10
相关论文
共 47 条
  • [1] Abstractive Summarizers Become Emotional on News Summarization
    Ahuir, Vicent
    Gonzalez, Jose-Angel
    Hurtado, Lluis-F.
    Segarra, Encarna
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [2] Summarizing scientiflc texts: Experiments with extractive summarizers
    Balage Filho, Pedro Paulo
    Salguelro Pardo, Thiago Alexandre
    Gracas Volpe Nunes, Maria Das
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2007, : 520 - 524
  • [3] Understanding the Behaviour of Neural Abstractive Summarizers using Contrastive Examples
    Kumar, Krtin
    Cheung, Jackie Chi Kit
    [J]. 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 3949 - 3954
  • [4] To Point or Not to Point: Understanding How Abstractive Summarizers Paraphrase Text
    Wilber, Matt
    Timkey, William
    van Schijndel, Marten
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3362 - 3376
  • [5] Learning Opinion Summarizers by Selecting Informative Reviews
    Brazinskas, Arthur
    Lapata, Mirella
    Titov, Ivan
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 9424 - 9442
  • [6] FUEL BALANCE AT STEUBENVILLE WORKS CONTROLLED BY UTILIZING SUMMARIZERS
    DICKSON, JH
    NUZUM, GC
    [J]. JOURNAL OF METALS, 1954, 6 (10): : 1127 - 1129
  • [7] A comparison of automatic summarizers of texts in Brazilian Portuguese
    Rino, LHM
    Pardo, TAS
    Silla, CN
    Kaestner, CAA
    Pombo, M
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2004, 2004, 3171 : 235 - 244
  • [8] Pasokh: A Standard Corpus for the Evaluation of Persian Text Summarizers
    Moghaddas, Behdad Behmadi
    Kahani, Mohsen
    Toosi, Seyyed Ahmad
    Pourmasoumi, Asef
    Estiri, Ahmad
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2013), 2013, : 471 - 475
  • [9] The GIL Summarizers: Experiments in the Track QA@INEX'10
    Soriano-Morales, Edmundo-Pavel
    Medina-Urrea, Alfonso
    Sierra Martinez, Gerardo
    Mendez-Cruz, Carlos-Francisco
    [J]. COMPARATIVE EVALUATION OF FOCUSED RETRIEVAL, 2011, 6932 : 282 - 289
  • [10] Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
    Tang, Liyan
    Goyal, Tanya
    Fabbri, Alexander R.
    Laban, Philippe
    Xu, Jiacheng
    Yavuz, Semih
    Kryscinski, Wojciech
    Rousseau, Justin F.
    Durrett, Greg
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11626 - 11644