Multi-surrogate-assisted stochastic fractal search based on scale-free network for high-dimensional expensive optimization

被引:0
|
作者
Cheng, Xiaodi [1 ]
Hu, Wei [2 ]
Yu, Yongguang [1 ]
Rahmani, Ahmed [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Syst Sci, Beijing 100044, Peoples R China
[3] Cent Lille, CNRS, CRIStAL, UMR 9189, F-59651 Villeneuve Dascq, France
基金
中国国家自然科学基金;
关键词
Stochastic fractal search; Scale-free network; Multi-surrogate model; High-dimensional expensive optimization problems; ALGORITHM; MODELS;
D O I
10.1016/j.eswa.2024.123517
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surrogate -assisted meta -heuristic algorithms (SAMAs) have been increasingly popular in recent years for solving challenging optimization problems. However, the majority of recent studies concentrate on lowdimensional problems. In this paper, a scale -free network based multi -surrogate -assisted stochastic fractal search (SF-MSASFS) algorithm is proposed. Specifically, based on the stochastic fractal search (SFS) algorithm, multiple surrogate models, namely RBF and Kriging models, are used to enhance the robustness of the algorithm. The scale -free network is used to build the topology structure of the SFS algorithm, and the offspring particles are generated by means of the connection relationship between the parent particles. In addition, to further enhance adaptability, an adaptive mechanism is implemented, tailoring three distinct update mechanisms based on their corresponding reward values. Finally, the performance of the proposed algorithm is demonstrated by comparing the proposed algorithm with a number of state-of-the-art SAMAs on several well-known benchmark functions, in particular in solving high -dimensional expensive problems (HEOPs). The results underscore the SF-MSASFS algorithm's commendable optimization performance. (The MATLAB code can be found at the authors github: https://github.com/xiaodi-Cheng/SF-MSASFS)
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-surrogate-assisted stochastic fractal search algorithm for high-dimensional expensive problems *
    Cheng, Xiaodi
    Yu, Yongguang
    Hu, Wei
    INFORMATION SCIENCES, 2023, 640
  • [2] Granularity-based surrogate-assisted particle swarm optimization for high-dimensional expensive optimization
    Tian, Jie
    Sun, Chaoli
    Tan, Ying
    Zeng, Jianchao
    KNOWLEDGE-BASED SYSTEMS, 2020, 187
  • [3] Surrogate-Assisted Cooperative Swarm Optimization of High-Dimensional Expensive Problems
    Sun, Chaoli
    Jin, Yaochu
    Cheng, Ran
    Ding, Jinliang
    Zeng, Jianchao
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (04) : 644 - 660
  • [4] Surrogate-assisted evolutionary sampling particle swarm optimization for high-dimensional expensive optimization
    Huang, Kuihua
    Zhen, Huixiang
    Gong, Wenyin
    Wang, Rui
    Bian, Weiwei
    NEURAL COMPUTING & APPLICATIONS, 2023,
  • [5] Surrogate-assisted teaching-learning-based optimization for high-dimensional and computationally expensive problems
    Dong, Huachao
    Wang, Peng
    Yu, Xinkai
    Song, Baowei
    APPLIED SOFT COMPUTING, 2021, 99
  • [6] A Surrogate-Assisted Differential Evolution Algorithm for High-Dimensional Expensive Optimization Problems
    Wang, Weizhong
    Liu, Hai-Lin
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2685 - 2697
  • [7] Surrogate-Assisted Multipopulation Particle Swarm Optimizer for High-Dimensional Expensive Optimization
    Liu, Yuanchao
    Liu, Jianchang
    Jin, Yaochu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (07): : 4671 - 4684
  • [8] Efficient hierarchical surrogate-assisted differential evolution for high-dimensional expensive optimization
    Chen, Guodong
    Li, Yong
    Zhang, Kai
    Xue, Xiaoming
    Wang, Jian
    Luo, Qin
    Yao, Chuanjin
    Yao, Jun
    INFORMATION SCIENCES, 2021, 542 : 228 - 246
  • [9] A Surrogate-Assisted Multiswarm Optimization Algorithm for High-Dimensional Computationally Expensive Problems
    Li, Fan
    Cai, Xiwen
    Gao, Liang
    Shen, Weiming
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1390 - 1402
  • [10] A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional expensive blackbox optimization
    Fusheng Bai
    Dongchi Zou
    Yutao Wei
    Journal of Global Optimization, 2024, 89 : 93 - 115