JEmpirical Dynamic Programming for Controlled Diffusion Processes

被引:0
|
作者
Karumanchi, Sambhu H. [1 ]
Belabbas, Mohamed A. [2 ]
Hovakimyan, Naira [3 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
美国国家科学基金会;
关键词
Stochastic optimal control; Numerical methods for optimal control; Diffusion; processes; Reinforcement learning; Markov decision process; Value iteration; ALGORITHM;
D O I
10.1016/j.ifacol.2023.10.854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider Markov chain approximation for optimal control of diffusion processes under infinite horizon discounted cost optimality and apply the simulation-based Empirical Value Iteration to estimate the value function of each approximating chain. We follow a nested multi-grid discretization of the state space to establish weak convergence of the value function sequence to the value function of the original controlled diffusion. We illustrate the convergence performance of the model on the popular Benes' bang-bang control problem [Bene.s (1974)].
引用
收藏
页码:11235 / 11241
页数:7
相关论文
共 50 条
  • [1] ON THE DYNAMIC PROGRAMMING PRINCIPLE FOR CONTROLLED DIFFUSION PROCESSES IN A CYLINDRICAL REGION
    Rokhlin, D. B.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 302 - 310
  • [3] A generalized dynamic programming procedure for controlled processes with profits
    Ivaneshkin, Alexander I.
    Journal of Automation and Information Sciences, 2007, 39 (03) : 61 - 67
  • [4] A DIRECT METHOD FOR STUDYING THE DYNAMIC-PROGRAMMING EQUATION FOR CONTROLLED DIFFUSION-PROCESSES IN HILBERT-SPACES
    BARBU, V
    DAPRATO, G
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1981, 4 (01) : 23 - 43
  • [5] ROBUST ESTIMATION OF MULTIVARIATE JUMP-DIFFUSION PROCESSES VIA DYNAMIC PROGRAMMING
    Torzhkov, Andrey
    Sharma, Puneet
    Chakraborty, Amit
    PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 1123 - 1132
  • [6] Controlled diffusion processes
    Borkar, Vivek S.
    PROBABILITY SURVEYS, 2005, 2 : 213 - 244
  • [7] Linear Programming and the Control of Diffusion Processes
    Ahn, Andrew
    Haugh, Martin
    INFORMS JOURNAL ON COMPUTING, 2015, 27 (04) : 646 - 657
  • [8] KINETICS OF PROCESSES CONTROLLED BY DIFFUSION
    KAMINSKII, VA
    BRUNOV, PA
    TIMASHEV, SF
    COLLOID JOURNAL OF THE USSR, 1977, 39 (04): : 608 - 613
  • [9] Approximate dynamic programming with Gaussian processes
    Deisenroth, Marc P.
    Peters, Jan
    Rasmussen, Carl E.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4480 - +
  • [10] Programming Elasticity and Commitment in Dynamic Processes
    Fernandez, Pablo
    Truong, Hong-Linh
    Dustdar, Schahram
    Ruiz-Cortes, Antonio
    IEEE INTERNET COMPUTING, 2015, 19 (02) : 68 - 74