A binary 2D perovskite passivation for efficient and stable perovskite/silicon tandem solar cells

被引:0
|
作者
Pei, Fengtao [1 ,2 ,3 ]
Chen, Yihua [1 ]
Wang, Qianqian [1 ]
Li, Liang [2 ]
Ma, Yue [1 ]
Liu, Huifen [2 ]
Duan, Ye [2 ,3 ]
Song, Tinglu [1 ]
Xie, Haipeng [4 ]
Liu, Guilin [5 ]
Yang, Ning [1 ,3 ]
Zhang, Ying [1 ]
Zhou, Wentao [2 ]
Kang, Jiaqian [6 ]
Niu, Xiuxiu [1 ]
Li, Kailin [2 ]
Wang, Feng [2 ]
Xiao, Mengqi [1 ]
Yuan, Guizhou [1 ]
Wu, Yuetong [2 ]
Zhu, Cheng [1 ]
Wang, Xueyun [6 ]
Zhou, Huanping [2 ]
Wu, Yiliang [3 ]
Chen, Qi [1 ]
机构
[1] Beijing Inst Technol, Expt Ctr Adv Mat, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Auner Technol Co Ltd, Beijing 100081, Peoples R China
[4] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Supermicrostruct & Ultrafast Proc, Changsha 410083, Peoples R China
[5] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[6] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1038/s41467-024-51345-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To achieve high power conversion efficiency in perovskite/silicon tandem solar cells, it is necessary to develop a promising wide-bandgap perovskite absorber and processing techniques in relevance. To date, the performance of devices based on wide-bandgap perovskite is still limited mainly by carrier recombination at their electron extraction interface. Here, we demonstrate assembling a binary two-dimensional perovskite by both alternating-cation-interlayer phase and Ruddlesden-Popper phase to passivate perovskite/C60 interface. The binary two-dimensional strategy takes effects not only at the interface but also in the bulk, which enables efficient charge transport in a wide-bandgap perovskite solar cell with a stabilized efficiency of 20.79% (1 cm2). Based on this absorber, a monolithic perovskite/silicon tandem solar cell is fabricated with a steady-state efficiency of 30.65% assessed by a third party. Moreover, the tandem devices retain 96% of their initial efficiency after 527 h of operation under full spectral continuous illumination, and 98% after 1000 h of damp-heat testing (85 degrees C with 85% relative humidity). The performance of wide bandgap perovskite solar cells is limited by the carrier recombination at their electron extraction interface. Here, the authors assemble binary 2D perovskites for efficient charge transport and realizing stable perovskite/silicon tandems with device efficiency over 30%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells
    Chin, Xin Yu
    Turkay, Deniz
    Steele, Julian A.
    Tabean, Saba
    Eswara, Santhana
    Mensi, Mounir
    Fiala, Peter
    Wolff, Christian M.
    Paracchino, Adriana
    Artuk, Kerem
    Jacobs, Daniel
    Guesnay, Quentin
    Sahli, Florent
    Andreatta, Gaelle
    Boccard, Mathieu
    Jeangros, Quentin
    Ballif, Christophe
    SCIENCE, 2023, 381 (6653) : 59 - 62
  • [2] Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells
    Wu, Guangbao
    Liang, Rui
    Ge, Mingzheng
    Sun, Guoxing
    Zhang, Yuan
    Xing, Guichuan
    ADVANCED MATERIALS, 2022, 34 (08)
  • [3] Front-contact passivation through 2D/3D perovskite heterojunctions enables efficient bifacial perovskite/silicon tandem solar cells
    Ugur, Esma
    Aydin, Erkan
    De Bastiani, Michele
    Harrison, George T.
    Yildirim, Bumin K.
    Teale, Sam
    Chen, Bin
    Liu, Jiang
    Wang, Mingcong
    Seitkhan, Akmaral
    Babics, Maxime
    Subbiah, Anand S.
    Said, Ahmed Ali
    Azmi, Randi
    Rehman, Atteq Ur
    Allen, Thomas G.
    Schulz, Philip
    Sargent, Edward H.
    Laquai, Frederic
    Wolf, Stefaan De
    MATTER, 2023, 6 (09) : 2919 - 2934
  • [4] Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells
    Er-raji, Oussama
    Mahmoud, Mohamed A.A.
    Fischer, Oliver
    Ramadan, Alexandra J.
    Bogachuk, Dmitry
    Reinholdt, Alexander
    Schmitt, Angelika
    Kore, Bhushan P.
    Gries, Thomas William
    Musiienko, Artem
    Schultz-Wittmann, Oliver
    Bivour, Martin
    Hermle, Martin
    Schubert, Martin C.
    Borchert, Juliane
    Glunz, Stefan W.
    Schulze, Patricia S.C.
    Joule, 2024, 8 (10): : 2811 - 2833
  • [5] Pure Chloride 2D/3D Heterostructure Passivation for Efficient and Stable Perovskite Solar Cells
    Tan, Li
    Shen, Lina
    Song, Peiquan
    Luo, Yujie
    Zheng, Lingfang
    Tian, Chengbo
    Xie, Liqiang
    Yang, Jinxin
    Wei, Zhanhua
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (06):
  • [6] In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells
    Chen, Peng
    Bai, Yang
    Wang, Songcan
    Lyu, Miaoqiang
    Yun, Jung-Ho
    Wang, Lianzhou
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)
  • [7] Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells
    Kim, Hobeom
    Lim, Jaekeun
    Sohail, Muhammad
    Nazeeruddin, Mohammad Khaja
    SOLAR RRL, 2022, 6 (07)
  • [8] Self-Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells
    Kim, Hobeom
    Pei, Mingyuan
    Lee, Yonghui
    Sutanto, Albertus A.
    Paek, Sanghyun
    Queloz, Valentin I. E.
    Huckaba, Aron J.
    Cho, Kyung Taek
    Yun, Hyung Joong
    Yang, Hoichang
    Nazeeruddin, Mohammad Khaja
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (19)
  • [9] Perovskite Passivation Strategies for Efficient and Stable Solar Cells
    Li, Cong
    Li, Huan
    Zhu, Zhinan
    Cui, Nuanyang
    Tan, Zhan'ao
    Yang, Rusen
    SOLAR RRL, 2021, 5 (01)
  • [10] Perovskite/silicon tandem solar cells with bilayer interface passivation 
    Jiang Liu
    Yongcai He
    Lei Ding
    Hua Zhang
    Qiaoyan Li
    Lingbo Jia
    Jia Yu
    Ting Wai Lau
    Minghui Li
    Yuan Qin
    Xiaobing Gu
    Fu Zhang
    Qibo Li
    Ying Yang
    Shuangshuang Zhao
    Xiaoyong Wu
    Jie Liu
    Tong Liu
    Yajun Gao
    Yonglei Wang
    Xin Dong
    Hao Chen
    Ping Li
    Tianxiang Zhou
    Miao Yang
    Xiaoning Ru
    Fuguo Peng
    Shi Yin
    Minghao Qu
    Dongming Zhao
    Zhiguo Zhao
    Menglei Li
    Penghui Guo
    Hui Yan
    Chuanxiao Xiao
    Ping Xiao
    Jun Yin
    Xiaohong Zhang
    Zhenguo Li
    Bo He
    Xixiang Xu
    Nature, 2024, 635 (8039) : 596 - 603