Impact of the North Atlantic Oscillation on the Decadal Variability of the Upper Subtropical-Tropical Atlantic Ocean

被引:1
|
作者
Roch, M. [1 ]
Brandt, P. [1 ,2 ]
Schmidtko, S. [1 ]
Tuchen, F. P. [3 ]
机构
[1] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany
[2] Univ Kiel, Fac Math & Nat Sci, Kiel, Germany
[3] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL USA
关键词
subtropical-tropical Atlantic; North Atlantic Oscillation; potential vorticity; thermocline flow; equatorial undercurrent; EQUATORIAL UNDERCURRENT; INTERANNUAL VARIABILITY; SUBDUCTION RATE; HEAT-CONTENT; UPPER-LAYER; CIRCULATION; PATHWAYS; MECHANISMS; FLOW;
D O I
10.1029/2023JC020614
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
In the northeastern tropical Atlantic, a region of high potential vorticity (PV) determines the size of the exchange window for the interior thermocline flow of the subtropical cell via its variations in strength and extent. Variability of this PV barrier has the potential to impact the ventilation of the tropical Atlantic on decadal timescales. Here, the impact of the North Atlantic Oscillation (NAO) on the PV barrier related to isopycnals within the thermocline of the subtropical-tropical Atlantic Ocean is assessed from Argo observations for the time period of 2006-2022. Relative to the negative NAO phase (2009-2010), during the positive NAO phase (2014-2019), the North Atlantic subtropical high and the northeast trades are intensified. Satellite-derived wind stress curl shows increased upwelling/downwelling on the equatorward/poleward side of the trade wind zone, respectively. In the subtropical-tropical Atlantic, a symmetric pattern of isopycnal heave is observed: rising isopycnals within 20 degrees N and 20 degrees S and sinking poleward of that. With rising isopycnals, the PV barrier in the northeastern tropical Atlantic becomes stronger. Analyses of geostrophic velocities and the Sverdrup streamfunction show that during the positive NAO phase there are increased equatorward velocities at thermocline level along the western boundary and reduced velocities through the interior as a result of intensified northeast trades and therefore a strengthened PV barrier. Intensified trades lead to enhanced subduction of thermocline waters and, independent of that, to a strengthened Equatorial Undercurrent transport as observed at the mooring site at 0 degrees, 23 degrees W, likely via the pulling effect of the subtropical cells. In the North Atlantic Ocean, subducted water from the subtropics has two possible pathways within the thermocline toward the equatorial region: the interior pathway and the pathway along the western boundary. The size of the exchange window between subtropics and tropics depends on the extent of a barrier zone in the eastern part of the basin that is associated with wind-driven upwelling of density surfaces. The North Atlantic Oscillation (NAO) is the dominant atmospheric climate mode in the North Atlantic and in this study, we show how the NAO impacts the barrier for the equatorward thermocline flow in the tropical Atlantic Ocean. During positive NAO phases (e.g., 2014-2019), density surfaces become shallower and strengthen the barrier, while during negative NAO phases (e.g., 2009-2010) the barrier weakens. Geostrophic velocity analysis reveals that during positive NAO phases more thermocline water is transported equatorward via the western boundary and less via the interior pathway. Additionally, observations from a mooring site at 0 degrees, 23 degrees W show stronger Equatorial Undercurrent transport as a result of intensified trade winds during positive NAO phases. Trade winds in the northeastern tropical Atlantic strengthen during positive phases of the North Atlantic Oscillation (NAO+) Potential vorticity barrier for the interior equatorward thermocline flow of the North Atlantic Subtropical Cell strengthens during NAO+ Annual subduction of thermocline water and Equatorial Undercurrent transport increase simultaneously from 2008 to 2018
引用
下载
收藏
页数:20
相关论文
共 50 条