An impact of inclined MHD on biviscosity Bingham hybrid nanofluid flow over porous stretching/shrinking sheet with heat transfer

被引:15
|
作者
Mahabaleshwar, U. S. [1 ]
Sachhin, S. M. [1 ]
Perez, L. M. [2 ]
Oztop, H. F. [3 ,4 ,5 ]
机构
[1] Davangere Univ, Dept Studies Math, Davangere, India
[2] Univ Tarapaca, Dept Fis, FACI, Casilla 7D, Arica 1000000, Chile
[3] Univ Sharjah, Coll Engn, Dept Mech & Nucl Engn, Sharjah 27272, U Arab Emirates
[4] Firat Univ, Technol Fac, Dept Mech Engn, Elazig, Turkiye
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Hybrid nanofluids; Radiation; Inclined magnetic field; Porous; Heat source/sink; COMBUSTION; CONVECTION;
D O I
10.1016/j.molliq.2024.124244
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study examines the effect of radiation and inclined magnetic field on the biviscosity Bingham hybrid nanofluid flow on the permeable stretching/shrinking surface. Hybrid nano fluid composites are formed by dissolving Graphene oxide (GO) and Molybdenum disulfide (MoS2) in base fluid Ethylene Glycol (EG), applying these nanoparticles to the Ethylene Glycol (base fluid) will enhance heat transfer. Furthermore, it studied the heat transmission process using variable thermal conductivity of the heat source/sink. Governing equations of velocity and temperature are converted to a set of nonlinear ordinary differential equations (ODE) via suitable transformations and the obtained equations are solved using the boundary conditions, energy equation with radiation, and heat source/sink effect solved analytically by using hypergeometric function. Significant physical characteristics like mass transpiration, Prandtl number, Biot number, and thermal radiations can be discussed using the graphical analysis. The investigation outcomes reveal that increasing the magnetic field enhances skin friction. Increasing the volume fraction, Biot number, and thermal radiation increases the thermal boundary layer, and velocity decreases by increasing the inverse Darcy parameter. Current work has many useful applications in engineering, biological and physical sciences, cleaning engine lubricants, thrust bearing technologies, etc.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Impact of Navier's Slip and MHD on a Hybrid Nanofluid Flow over a Porous Stretching/Shrinking Sheet with Heat Transfer
    Maranna, Thippaiah
    Sachin, Gadhigeppa Myacher
    Mahabaleshwar, Ulavathi Shettar
    Perez, Laura M.
    Shevchuk, Igor V.
    FLUIDS, 2024, 9 (08)
  • [2] MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition
    Aly, Emad H.
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (09) : 3012 - 3038
  • [3] Hybrid Nanofluid Flow Over a Porous Stretching/Shrinking Plate with Heat Transfer
    Mahabaleshwar U.S.
    vanitha G.P.
    souayeh B.
    International Journal of Applied and Computational Mathematics, 2024, 10 (2)
  • [4] Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (07) : 3497 - 3513
  • [5] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
    Khalili, Sadegh
    Dinarvand, Saeed
    Hosseini, Reza
    Tamim, Hossein
    Pop, Ioan
    CHINESE PHYSICS B, 2014, 23 (04)
  • [6] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
    Sadegh Khali
    Saeed Dinarvand
    Reza Hossei
    Hossein Tamim
    Ioan Pop
    Chinese Physics B, 2014, (04) : 673 - 680
  • [7] MHD Boundary Layer Flow and Heat Transfer Past a Stretching/Shrinking Sheet in a Nanofluid
    Sandeep, N.
    Sulochana, C.
    Kumar, B. Rushi
    JOURNAL OF NANOFLUIDS, 2015, 4 (04) : 512 - 517
  • [8] Impact of multiple slips and thermal radiation on heat and mass transfer in MHD Maxwell hybrid nanofluid flow over porous stretching sheet
    Khan, Zafar Hayat
    Khan, Waqar A.
    Ibrahim, Shaik Mohammed
    Swain, K.
    Huang, Zaitang
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 61
  • [9] MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation
    Wahid, Nur Syahirah
    Arifin, Norihan Md
    Khashi'ie, Najiyah Safwa
    Pop, Ioan
    Bachok, Norfifah
    Hafidzuddin, Ezad Hafidz
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (05) : 1706 - 1727
  • [10] Heat generation/absorption effect on MHD flow of hybrid nanofluid over bidirectional exponential stretching/shrinking sheet
    Zainal, Nurul Amira
    Nazar, Roslinda
    Naganthran, Kohilavani
    Pop, Ioan
    CHINESE JOURNAL OF PHYSICS, 2021, 69 : 118 - 133