The higher-order positon and breather-positon solutions for the complex short pulse equation

被引:0
|
作者
Li, Ping [1 ]
He, Jingsong [2 ]
Li, Maohua [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Degenerate Darboux transformation; Higher-order positon; Breather-positon; Interaction; ROGUE WAVE SOLUTIONS; DETERMINANT REPRESENTATION; DARBOUX TRANSFORMATION; SMOOTH POSITONS; MULTISOLITON;
D O I
10.1007/s11071-024-09503-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Darboux transformation (DT) for the coupled short pulse (cSP) equation is constructed through the lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-matrix approach, and the degenerated Darboux transformation (dDT) for the complex short pulse (CSP) equation is obtained by a conjugate reduction and degeneration limit methods. Through this dDT, we construct a series of degenerated solutions to the CSP equation: three types of higher-order positons based on vanishing boundary condition (VBC) and a smooth breather-positon (b-positon) with non-vanishing boundary condition (NVBC). Its dynamic and some new classification properties are also reviewed. Furthermore, we also studied the interaction between smooth position with three types of solitons under VBC and proved that smooth positon is a super-reflectionless potential. In addition, the generating mechanism and some characteristics of smooth b-positon were analyzed, including the spatiotemporal structure and compression effect.
引用
收藏
页码:10239 / 10258
页数:20
相关论文
共 50 条
  • [1] Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrodinger equation
    Vishnu Priya, N.
    Monisha, S.
    Senthilvelan, M.
    Rangarajan, Govindan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (05):
  • [2] Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger equation
    N. Vishnu Priya
    S. Monisha
    M. Senthilvelan
    Govindan Rangarajan
    The European Physical Journal Plus, 137
  • [3] Nth-order smooth positon and breather-positon solutions for the generalized integrable discrete nonlinear Schrodinger equation
    Yang, Jun
    Tian, Hongjuan
    NONLINEAR DYNAMICS, 2023, 111 (06) : 5629 - 5639
  • [4] The multi-positon and breather positon solutions for the higher-order nonlinear Schrödinger equation in optical fibers
    Zhang, Xi
    Wang, Yu-Feng
    Yang, Sheng-Xiong
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [5] Nth-order smooth positon and breather-positon solutions for the generalized integrable discrete nonlinear Schrödinger equation
    Jun Yang
    Hongjuan Tian
    Nonlinear Dynamics, 2023, 111 : 5629 - 5639
  • [6] Higher order smooth positon and breather positon solutions of an extended nonlinear Schrodinger equation with the cubic and quartic nonlinearity
    Monisha, S.
    Priya, N. Vishnu
    Senthilvelan, M.
    Rajasekar, S.
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [7] The breather, breather-positon, rogue wave for the reverse space-time nonlocal short pulse equation in nonzero background
    Shan, Jiaqing
    Li, Maohua
    WAVE MOTION, 2025, 133
  • [8] Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation
    Zhang, Zhao
    Yang, Xiangyu
    Li, Biao
    NONLINEAR DYNAMICS, 2020, 100 (02) : 1551 - 1557
  • [9] Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation
    Zhao Zhang
    Xiangyu Yang
    Biao Li
    Nonlinear Dynamics, 2020, 100 : 1551 - 1557
  • [10] The massive Thirring model in Bragg grating: Soliton molecules , breather-positon and semirational solutions
    Xu, Tao
    Qiao, Zhijun
    WAVE MOTION, 2025, 134