Stretch tuning of dispersion in optical microfibers

被引:0
|
作者
Liu, Keying [1 ]
Li, Yuhang [2 ,3 ,4 ]
Gao, Mingjin [2 ,3 ,4 ]
Zhang, Jianbin [1 ]
Xu, Peizhen [1 ]
Guo, Xin [1 ]
Liu, Qiang [2 ,3 ,4 ]
Tong, Limin [1 ]
机构
[1] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, New Cornerstone Sci Lab, State Key Lab Extreme Photon & Instrumentat,Coll O, Hangzhou 310027, Peoples R China
[2] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[3] State Key Lab Precis Space Time Informat Sensing T, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Key Lab Photon Control Technol, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
1; MU-M; FIBER LASER; SUPERCONTINUUM GENERATION; NOISE; NANOWIRES; SOLITON; NONLINEARITY;
D O I
10.1364/OL.511160
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dispersion management is vital for nonlinear optics and ultrafast lasers. We demonstrate that group velocity dispersion (GVD, or second -order dispersion, i.e., beta 2) and group delay dispersion (GDD) in optical microfibers can be tuned simply by stretch due to their remarkable features of small diameter and diameter -dependent dispersion. We experimentally demonstrate that a pulling force of just a few mN would elongate the optical microfibers by up to 5%, bringing a significant change in the beta 2 and GDD. This change can be increment or decrement, lying on the diameter of optical microfibers. Therefore, 10 -cm -long optical microfibers would provide a GDD change of 104 fs2 when elongated by 5%, well in the elastic limit. Remarkably, this change is equivalent to the GDD (not GDD change) provided by a 0.5 -m -long single -mode fiber. Experimental results and simulations show that the GDD change is due to the interplay between elongation, diameter shrink, and refractive index decrease. Benefited from the easy manipulation, tiny pulling force required, and full integration with conventional optical fibers, stretch tuning of dispersion in optical microfibers would find applications in dispersion management for ultrafast lasers and nonlinear optics. (c) 2024 Optica Publishing Group
引用
收藏
页码:895 / 898
页数:4
相关论文
共 50 条
  • [1] In situ fine tailoring of group velocity dispersion in optical microfibers via nanocoatings
    Xu, Z. Y.
    Li, Y. H.
    Wang, L. J.
    OPTICS EXPRESS, 2014, 22 (23): : 28338 - 28345
  • [2] Tuning group-velocity dispersion by optical force
    Jiang, Wei C.
    Lin, Qiang
    OPTICS LETTERS, 2013, 38 (14) : 2604 - 2607
  • [3] Optical microfibers and nanofibers
    Wu, Xiaoqin
    Tong, Limin
    NANOPHOTONICS, 2013, 2 (5-6) : 407 - 428
  • [4] THUNDER piezoelectric actuators as a method of stretch-tuning an optical fiber grating
    Allison, SG
    Fox, RL
    Froggatt, ME
    Childers, BA
    SMART STRUCTURES AND MATERIAL 2000: INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES, 2000, 3991 : 74 - 83
  • [5] DISPERSION ANOMALIES OF TUNING CHARACTERISTICS AND SPECTRUM OF THE OPTICAL PARAMETRIC OSCILLATION
    BIRMONTAS, A
    PISKARSKAS, A
    STABINIS, A
    KVANTOVAYA ELEKTRONIKA, 1983, 10 (09): : 1881 - 1884
  • [6] Chromo-modal dispersion for optical communication and time-stretch spectroscopy
    Liao, Ruolin
    Hon, Nick K.
    Buckley, Brandon W.
    Diebold, Eric D.
    Jalali, Bahram
    OPTICS LETTERS, 2021, 46 (03) : 500 - 503
  • [7] Microparticle Detection With Optical Microfibers
    Wei, Zhengtong
    Song, Zhangqi
    Zhang, Xueliang
    Meng, Zhou
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (06) : 568 - 571
  • [8] Optical microfibers and nanofibers: A tutorial
    Tong, Limin
    Zi, Fei
    Guo, Xin
    Lou, Jingyi
    OPTICS COMMUNICATIONS, 2012, 285 (23) : 4641 - 4647
  • [9] Highly birefringent optical microfibers
    Xuan, Haifeng
    Ju, Jian
    Jin, Wei
    OPTICS EXPRESS, 2010, 18 (04): : 3828 - 3839
  • [10] Optical data storage in microfibers
    Labeyrie, A
    Huignard, JP
    Loiseaux, B
    OPTICS LETTERS, 1998, 23 (04) : 301 - 303