A general computational framework and a hybrid algorithm for large-scale data envelopment analysis

被引:1
|
作者
Chu, Junfei [1 ]
Rui, Yuting [1 ]
Khezrimotlagh, Dariush [2 ]
Zhu, Joe [3 ]
机构
[1] Cent South Univ, Sch Business, Changsha 410083, Peoples R China
[2] Penn State Univ, Dept Math, Harrisburg, PA USA
[3] Worcester Polytech Inst, Business Sch, Worcester, MA 02420 USA
关键词
Data envelopment analysis; Linear programming; Reference set selection; Large-scale data; EFFICIENCY;
D O I
10.1016/j.ejor.2024.01.030
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper develops a new algorithm to accelerate DEA computation for large-scale datasets. We first provide a general DEA computation framework that employs a simple small -size linear program (LP). This LP can obtain all the critical outcomes simultaneously for accelerating DEA computation in the literature. Based on the general computational framework, we propose a new algorithm (called hybrid algorithm) that uses a hybrid strategy of density -increasing mechanism and reference set selection. The hybrid algorithm continuously solves the simple small -size LP to either identify an extreme efficient DMU or directly obtain the efficiency of the DMU under evaluation. To ensure the LPs solved are always in a small size, the hybrid algorithm selects the data of only a small subsample of the identified extreme efficient DMUs into the LPs' coefficient matrix each time when a DMU is evaluated. A new subsample selection technique is also suggested. The numerical experiment shows that the new technique can select subsample of extreme efficient DMUs more effectively compared with the previous subsample selection technique. Consequently, the hybrid algorithm solves only one or a minuscule number of small -size LPs to obtain each DMU's efficiency. Therefore, the hybrid algorithm ensures that the size and number of LPs solved for each DMU are small. The computational experiment on large datasets shows that the hybrid algorithm performs more than an order of magnitude faster than the existing representative algorithms.
引用
收藏
页码:639 / 650
页数:12
相关论文
共 50 条
  • [1] Computational solutions to large-scale data management and analysis
    Schadt, Eric E.
    Linderman, Michael D.
    Sorenson, Jon
    Lee, Lawrence
    Nolan, Garry P.
    NATURE REVIEWS GENETICS, 2010, 11 (09) : 647 - 657
  • [2] Computational solutions to large-scale data management and analysis
    Eric E. Schadt
    Michael D. Linderman
    Jon Sorenson
    Lawrence Lee
    Garry P. Nolan
    Nature Reviews Genetics, 2010, 11 : 647 - 657
  • [3] A general framework for large-scale model selection
    Haunschild, M. D.
    Wahl, S. A.
    Freisleben, B.
    Wiechert, W.
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (06): : 901 - 917
  • [5] Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models
    Barr, RS
    Durchholz, ML
    ANNALS OF OPERATIONS RESEARCH, 1997, 73 (0) : 339 - 372
  • [6] Parallel and hierarchical decomposition approaches for solving large-scale Data Envelopment Analysis models
    Richard S. Barr
    Matthew L. Durchholz
    Annals of Operations Research, 1997, 73 : 339 - 372
  • [7] Large-scale data envelopment analysis (DEA) implementation: a strategic performance management approach
    Medina-Borja, A.
    Pasupathy, K. S.
    Triantis, K.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2007, 58 (08) : 1084 - 1098
  • [8] A general-purpose framework for parallel processing of large-scale LiDAR data
    Li, Zhenlong
    Hodgson, Michael E.
    Li, Wenwen
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2018, 11 (01) : 26 - 47
  • [9] A computational framework to explore large-scale biosynthetic diversity
    Jorge C. Navarro-Muñoz
    Nelly Selem-Mojica
    Michael W. Mullowney
    Satria A. Kautsar
    James H. Tryon
    Elizabeth I. Parkinson
    Emmanuel L. C. De Los Santos
    Marley Yeong
    Pablo Cruz-Morales
    Sahar Abubucker
    Arne Roeters
    Wouter Lokhorst
    Antonio Fernandez-Guerra
    Luciana Teresa Dias Cappelini
    Anthony W. Goering
    Regan J. Thomson
    William W. Metcalf
    Neil L. Kelleher
    Francisco Barona-Gomez
    Marnix H. Medema
    Nature Chemical Biology, 2020, 16 : 60 - 68
  • [10] A computational framework to explore large-scale biosynthetic diversity
    Navarro-Munoz, Jorge C.
    Selem-Mojica, Nelly
    Mullowney, Michael W.
    Kautsar, Satria A.
    Tryon, James H.
    Parkinson, Elizabeth, I
    De Los Santos, Emmanuel L. C.
    Yeong, Marley
    Cruz-Morales, Pablo
    Abubucker, Sahar
    Roeters, Arne
    Lokhorst, Wouter
    Fernandez-Guerra, Antonio
    Cappelini, Luciana Teresa Dias
    Goering, Anthony W.
    Thomson, Regan J.
    Metcalf, William W.
    Kelleher, Neil L.
    Barona-Gomez, Francisco
    Medema, Marnix H.
    NATURE CHEMICAL BIOLOGY, 2020, 16 (01) : 60 - +